1 /*
2  * Faraday Technology FTTMR010 timer driver
3  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
4  *
5  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
6  * Copyright (C) 2001-2006 Storlink, Corp.
7  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
8  */
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/clockchips.h>
15 #include <linux/clocksource.h>
16 #include <linux/sched_clock.h>
17 #include <linux/clk.h>
18 #include <linux/slab.h>
19 #include <linux/bitops.h>
20 #include <linux/delay.h>
21 
22 /*
23  * Register definitions for the timers
24  */
25 #define TIMER1_COUNT		(0x00)
26 #define TIMER1_LOAD		(0x04)
27 #define TIMER1_MATCH1		(0x08)
28 #define TIMER1_MATCH2		(0x0c)
29 #define TIMER2_COUNT		(0x10)
30 #define TIMER2_LOAD		(0x14)
31 #define TIMER2_MATCH1		(0x18)
32 #define TIMER2_MATCH2		(0x1c)
33 #define TIMER3_COUNT		(0x20)
34 #define TIMER3_LOAD		(0x24)
35 #define TIMER3_MATCH1		(0x28)
36 #define TIMER3_MATCH2		(0x2c)
37 #define TIMER_CR		(0x30)
38 #define TIMER_INTR_STATE	(0x34)
39 #define TIMER_INTR_MASK		(0x38)
40 
41 #define TIMER_1_CR_ENABLE	BIT(0)
42 #define TIMER_1_CR_CLOCK	BIT(1)
43 #define TIMER_1_CR_INT		BIT(2)
44 #define TIMER_2_CR_ENABLE	BIT(3)
45 #define TIMER_2_CR_CLOCK	BIT(4)
46 #define TIMER_2_CR_INT		BIT(5)
47 #define TIMER_3_CR_ENABLE	BIT(6)
48 #define TIMER_3_CR_CLOCK	BIT(7)
49 #define TIMER_3_CR_INT		BIT(8)
50 #define TIMER_1_CR_UPDOWN	BIT(9)
51 #define TIMER_2_CR_UPDOWN	BIT(10)
52 #define TIMER_3_CR_UPDOWN	BIT(11)
53 
54 /*
55  * The Aspeed AST2400 moves bits around in the control register
56  * and lacks bits for setting the timer to count upwards.
57  */
58 #define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
59 #define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
60 #define TIMER_1_CR_ASPEED_INT		BIT(2)
61 #define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
62 #define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
63 #define TIMER_2_CR_ASPEED_INT		BIT(6)
64 #define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
65 #define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
66 #define TIMER_3_CR_ASPEED_INT		BIT(10)
67 
68 #define TIMER_1_INT_MATCH1	BIT(0)
69 #define TIMER_1_INT_MATCH2	BIT(1)
70 #define TIMER_1_INT_OVERFLOW	BIT(2)
71 #define TIMER_2_INT_MATCH1	BIT(3)
72 #define TIMER_2_INT_MATCH2	BIT(4)
73 #define TIMER_2_INT_OVERFLOW	BIT(5)
74 #define TIMER_3_INT_MATCH1	BIT(6)
75 #define TIMER_3_INT_MATCH2	BIT(7)
76 #define TIMER_3_INT_OVERFLOW	BIT(8)
77 #define TIMER_INT_ALL_MASK	0x1ff
78 
79 struct fttmr010 {
80 	void __iomem *base;
81 	unsigned int tick_rate;
82 	bool count_down;
83 	u32 t1_enable_val;
84 	struct clock_event_device clkevt;
85 #ifdef CONFIG_ARM
86 	struct delay_timer delay_timer;
87 #endif
88 };
89 
90 /*
91  * A local singleton used by sched_clock and delay timer reads, which are
92  * fast and stateless
93  */
94 static struct fttmr010 *local_fttmr;
95 
96 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
97 {
98 	return container_of(evt, struct fttmr010, clkevt);
99 }
100 
101 static unsigned long fttmr010_read_current_timer_up(void)
102 {
103 	return readl(local_fttmr->base + TIMER2_COUNT);
104 }
105 
106 static unsigned long fttmr010_read_current_timer_down(void)
107 {
108 	return ~readl(local_fttmr->base + TIMER2_COUNT);
109 }
110 
111 static u64 notrace fttmr010_read_sched_clock_up(void)
112 {
113 	return fttmr010_read_current_timer_up();
114 }
115 
116 static u64 notrace fttmr010_read_sched_clock_down(void)
117 {
118 	return fttmr010_read_current_timer_down();
119 }
120 
121 static int fttmr010_timer_set_next_event(unsigned long cycles,
122 				       struct clock_event_device *evt)
123 {
124 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
125 	u32 cr;
126 
127 	/* Stop */
128 	cr = readl(fttmr010->base + TIMER_CR);
129 	cr &= ~fttmr010->t1_enable_val;
130 	writel(cr, fttmr010->base + TIMER_CR);
131 
132 	/* Setup the match register forward/backward in time */
133 	cr = readl(fttmr010->base + TIMER1_COUNT);
134 	if (fttmr010->count_down)
135 		cr -= cycles;
136 	else
137 		cr += cycles;
138 	writel(cr, fttmr010->base + TIMER1_MATCH1);
139 
140 	/* Start */
141 	cr = readl(fttmr010->base + TIMER_CR);
142 	cr |= fttmr010->t1_enable_val;
143 	writel(cr, fttmr010->base + TIMER_CR);
144 
145 	return 0;
146 }
147 
148 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
149 {
150 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
151 	u32 cr;
152 
153 	/* Stop */
154 	cr = readl(fttmr010->base + TIMER_CR);
155 	cr &= ~fttmr010->t1_enable_val;
156 	writel(cr, fttmr010->base + TIMER_CR);
157 
158 	return 0;
159 }
160 
161 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
162 {
163 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
164 	u32 cr;
165 
166 	/* Stop */
167 	cr = readl(fttmr010->base + TIMER_CR);
168 	cr &= ~fttmr010->t1_enable_val;
169 	writel(cr, fttmr010->base + TIMER_CR);
170 
171 	/* Setup counter start from 0 or ~0 */
172 	writel(0, fttmr010->base + TIMER1_COUNT);
173 	if (fttmr010->count_down)
174 		writel(~0, fttmr010->base + TIMER1_LOAD);
175 	else
176 		writel(0, fttmr010->base + TIMER1_LOAD);
177 
178 	/* Enable interrupt */
179 	cr = readl(fttmr010->base + TIMER_INTR_MASK);
180 	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
181 	cr |= TIMER_1_INT_MATCH1;
182 	writel(cr, fttmr010->base + TIMER_INTR_MASK);
183 
184 	return 0;
185 }
186 
187 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
188 {
189 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
190 	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
191 	u32 cr;
192 
193 	/* Stop */
194 	cr = readl(fttmr010->base + TIMER_CR);
195 	cr &= ~fttmr010->t1_enable_val;
196 	writel(cr, fttmr010->base + TIMER_CR);
197 
198 	/* Setup timer to fire at 1/HZ intervals. */
199 	if (fttmr010->count_down) {
200 		writel(period, fttmr010->base + TIMER1_LOAD);
201 		writel(0, fttmr010->base + TIMER1_MATCH1);
202 	} else {
203 		cr = 0xffffffff - (period - 1);
204 		writel(cr, fttmr010->base + TIMER1_COUNT);
205 		writel(cr, fttmr010->base + TIMER1_LOAD);
206 
207 		/* Enable interrupt on overflow */
208 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
209 		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
210 		cr |= TIMER_1_INT_OVERFLOW;
211 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
212 	}
213 
214 	/* Start the timer */
215 	cr = readl(fttmr010->base + TIMER_CR);
216 	cr |= fttmr010->t1_enable_val;
217 	writel(cr, fttmr010->base + TIMER_CR);
218 
219 	return 0;
220 }
221 
222 /*
223  * IRQ handler for the timer
224  */
225 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
226 {
227 	struct clock_event_device *evt = dev_id;
228 
229 	evt->event_handler(evt);
230 	return IRQ_HANDLED;
231 }
232 
233 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
234 {
235 	struct fttmr010 *fttmr010;
236 	int irq;
237 	struct clk *clk;
238 	int ret;
239 	u32 val;
240 
241 	/*
242 	 * These implementations require a clock reference.
243 	 * FIXME: we currently only support clocking using PCLK
244 	 * and using EXTCLK is not supported in the driver.
245 	 */
246 	clk = of_clk_get_by_name(np, "PCLK");
247 	if (IS_ERR(clk)) {
248 		pr_err("could not get PCLK\n");
249 		return PTR_ERR(clk);
250 	}
251 	ret = clk_prepare_enable(clk);
252 	if (ret) {
253 		pr_err("failed to enable PCLK\n");
254 		return ret;
255 	}
256 
257 	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
258 	if (!fttmr010) {
259 		ret = -ENOMEM;
260 		goto out_disable_clock;
261 	}
262 	fttmr010->tick_rate = clk_get_rate(clk);
263 
264 	fttmr010->base = of_iomap(np, 0);
265 	if (!fttmr010->base) {
266 		pr_err("Can't remap registers");
267 		ret = -ENXIO;
268 		goto out_free;
269 	}
270 	/* IRQ for timer 1 */
271 	irq = irq_of_parse_and_map(np, 0);
272 	if (irq <= 0) {
273 		pr_err("Can't parse IRQ");
274 		ret = -EINVAL;
275 		goto out_unmap;
276 	}
277 
278 	/*
279 	 * The Aspeed AST2400 moves bits around in the control register,
280 	 * otherwise it works the same.
281 	 */
282 	if (is_aspeed) {
283 		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
284 			TIMER_1_CR_ASPEED_INT;
285 		/* Downward not available */
286 		fttmr010->count_down = true;
287 	} else {
288 		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
289 	}
290 
291 	/*
292 	 * Reset the interrupt mask and status
293 	 */
294 	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
295 	writel(0, fttmr010->base + TIMER_INTR_STATE);
296 
297 	/*
298 	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
299 	 * where everything just counts down.
300 	 */
301 	if (is_aspeed)
302 		val = TIMER_2_CR_ASPEED_ENABLE;
303 	else {
304 		val = TIMER_2_CR_ENABLE;
305 		if (!fttmr010->count_down)
306 			val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
307 	}
308 	writel(val, fttmr010->base + TIMER_CR);
309 
310 	/*
311 	 * Setup free-running clocksource timer (interrupts
312 	 * disabled.)
313 	 */
314 	local_fttmr = fttmr010;
315 	writel(0, fttmr010->base + TIMER2_COUNT);
316 	writel(0, fttmr010->base + TIMER2_MATCH1);
317 	writel(0, fttmr010->base + TIMER2_MATCH2);
318 
319 	if (fttmr010->count_down) {
320 		writel(~0, fttmr010->base + TIMER2_LOAD);
321 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
322 				      "FTTMR010-TIMER2",
323 				      fttmr010->tick_rate,
324 				      300, 32, clocksource_mmio_readl_down);
325 		sched_clock_register(fttmr010_read_sched_clock_down, 32,
326 				     fttmr010->tick_rate);
327 	} else {
328 		writel(0, fttmr010->base + TIMER2_LOAD);
329 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
330 				      "FTTMR010-TIMER2",
331 				      fttmr010->tick_rate,
332 				      300, 32, clocksource_mmio_readl_up);
333 		sched_clock_register(fttmr010_read_sched_clock_up, 32,
334 				     fttmr010->tick_rate);
335 	}
336 
337 	/*
338 	 * Setup clockevent timer (interrupt-driven) on timer 1.
339 	 */
340 	writel(0, fttmr010->base + TIMER1_COUNT);
341 	writel(0, fttmr010->base + TIMER1_LOAD);
342 	writel(0, fttmr010->base + TIMER1_MATCH1);
343 	writel(0, fttmr010->base + TIMER1_MATCH2);
344 	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
345 			  "FTTMR010-TIMER1", &fttmr010->clkevt);
346 	if (ret) {
347 		pr_err("FTTMR010-TIMER1 no IRQ\n");
348 		goto out_unmap;
349 	}
350 
351 	fttmr010->clkevt.name = "FTTMR010-TIMER1";
352 	/* Reasonably fast and accurate clock event */
353 	fttmr010->clkevt.rating = 300;
354 	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
355 		CLOCK_EVT_FEAT_ONESHOT;
356 	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
357 	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
358 	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
359 	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
360 	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
361 	fttmr010->clkevt.cpumask = cpumask_of(0);
362 	fttmr010->clkevt.irq = irq;
363 	clockevents_config_and_register(&fttmr010->clkevt,
364 					fttmr010->tick_rate,
365 					1, 0xffffffff);
366 
367 #ifdef CONFIG_ARM
368 	/* Also use this timer for delays */
369 	if (fttmr010->count_down)
370 		fttmr010->delay_timer.read_current_timer =
371 			fttmr010_read_current_timer_down;
372 	else
373 		fttmr010->delay_timer.read_current_timer =
374 			fttmr010_read_current_timer_up;
375 	fttmr010->delay_timer.freq = fttmr010->tick_rate;
376 	register_current_timer_delay(&fttmr010->delay_timer);
377 #endif
378 
379 	return 0;
380 
381 out_unmap:
382 	iounmap(fttmr010->base);
383 out_free:
384 	kfree(fttmr010);
385 out_disable_clock:
386 	clk_disable_unprepare(clk);
387 
388 	return ret;
389 }
390 
391 static __init int aspeed_timer_init(struct device_node *np)
392 {
393 	return fttmr010_common_init(np, true);
394 }
395 
396 static __init int fttmr010_timer_init(struct device_node *np)
397 {
398 	return fttmr010_common_init(np, false);
399 }
400 
401 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
402 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
403 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
404 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
405 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
406