1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Faraday Technology FTTMR010 timer driver
4  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5  *
6  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7  * Copyright (C) 2001-2006 Storlink, Corp.
8  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9  */
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
22 
23 /*
24  * Register definitions for the timers
25  */
26 #define TIMER1_COUNT		(0x00)
27 #define TIMER1_LOAD		(0x04)
28 #define TIMER1_MATCH1		(0x08)
29 #define TIMER1_MATCH2		(0x0c)
30 #define TIMER2_COUNT		(0x10)
31 #define TIMER2_LOAD		(0x14)
32 #define TIMER2_MATCH1		(0x18)
33 #define TIMER2_MATCH2		(0x1c)
34 #define TIMER3_COUNT		(0x20)
35 #define TIMER3_LOAD		(0x24)
36 #define TIMER3_MATCH1		(0x28)
37 #define TIMER3_MATCH2		(0x2c)
38 #define TIMER_CR		(0x30)
39 #define TIMER_INTR_STATE	(0x34)
40 #define TIMER_INTR_MASK		(0x38)
41 
42 #define TIMER_1_CR_ENABLE	BIT(0)
43 #define TIMER_1_CR_CLOCK	BIT(1)
44 #define TIMER_1_CR_INT		BIT(2)
45 #define TIMER_2_CR_ENABLE	BIT(3)
46 #define TIMER_2_CR_CLOCK	BIT(4)
47 #define TIMER_2_CR_INT		BIT(5)
48 #define TIMER_3_CR_ENABLE	BIT(6)
49 #define TIMER_3_CR_CLOCK	BIT(7)
50 #define TIMER_3_CR_INT		BIT(8)
51 #define TIMER_1_CR_UPDOWN	BIT(9)
52 #define TIMER_2_CR_UPDOWN	BIT(10)
53 #define TIMER_3_CR_UPDOWN	BIT(11)
54 
55 /*
56  * The Aspeed AST2400 moves bits around in the control register
57  * and lacks bits for setting the timer to count upwards.
58  */
59 #define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
60 #define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
61 #define TIMER_1_CR_ASPEED_INT		BIT(2)
62 #define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
63 #define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
64 #define TIMER_2_CR_ASPEED_INT		BIT(6)
65 #define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
66 #define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
67 #define TIMER_3_CR_ASPEED_INT		BIT(10)
68 
69 #define TIMER_1_INT_MATCH1	BIT(0)
70 #define TIMER_1_INT_MATCH2	BIT(1)
71 #define TIMER_1_INT_OVERFLOW	BIT(2)
72 #define TIMER_2_INT_MATCH1	BIT(3)
73 #define TIMER_2_INT_MATCH2	BIT(4)
74 #define TIMER_2_INT_OVERFLOW	BIT(5)
75 #define TIMER_3_INT_MATCH1	BIT(6)
76 #define TIMER_3_INT_MATCH2	BIT(7)
77 #define TIMER_3_INT_OVERFLOW	BIT(8)
78 #define TIMER_INT_ALL_MASK	0x1ff
79 
80 struct fttmr010 {
81 	void __iomem *base;
82 	unsigned int tick_rate;
83 	bool count_down;
84 	u32 t1_enable_val;
85 	struct clock_event_device clkevt;
86 #ifdef CONFIG_ARM
87 	struct delay_timer delay_timer;
88 #endif
89 };
90 
91 /*
92  * A local singleton used by sched_clock and delay timer reads, which are
93  * fast and stateless
94  */
95 static struct fttmr010 *local_fttmr;
96 
97 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
98 {
99 	return container_of(evt, struct fttmr010, clkevt);
100 }
101 
102 static unsigned long fttmr010_read_current_timer_up(void)
103 {
104 	return readl(local_fttmr->base + TIMER2_COUNT);
105 }
106 
107 static unsigned long fttmr010_read_current_timer_down(void)
108 {
109 	return ~readl(local_fttmr->base + TIMER2_COUNT);
110 }
111 
112 static u64 notrace fttmr010_read_sched_clock_up(void)
113 {
114 	return fttmr010_read_current_timer_up();
115 }
116 
117 static u64 notrace fttmr010_read_sched_clock_down(void)
118 {
119 	return fttmr010_read_current_timer_down();
120 }
121 
122 static int fttmr010_timer_set_next_event(unsigned long cycles,
123 				       struct clock_event_device *evt)
124 {
125 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
126 	u32 cr;
127 
128 	/* Stop */
129 	cr = readl(fttmr010->base + TIMER_CR);
130 	cr &= ~fttmr010->t1_enable_val;
131 	writel(cr, fttmr010->base + TIMER_CR);
132 
133 	if (fttmr010->count_down) {
134 		/*
135 		 * ASPEED Timer Controller will load TIMER1_LOAD register
136 		 * into TIMER1_COUNT register when the timer is re-enabled.
137 		 */
138 		writel(cycles, fttmr010->base + TIMER1_LOAD);
139 	} else {
140 		/* Setup the match register forward in time */
141 		cr = readl(fttmr010->base + TIMER1_COUNT);
142 		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
143 	}
144 
145 	/* Start */
146 	cr = readl(fttmr010->base + TIMER_CR);
147 	cr |= fttmr010->t1_enable_val;
148 	writel(cr, fttmr010->base + TIMER_CR);
149 
150 	return 0;
151 }
152 
153 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
154 {
155 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
156 	u32 cr;
157 
158 	/* Stop */
159 	cr = readl(fttmr010->base + TIMER_CR);
160 	cr &= ~fttmr010->t1_enable_val;
161 	writel(cr, fttmr010->base + TIMER_CR);
162 
163 	return 0;
164 }
165 
166 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
167 {
168 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
169 	u32 cr;
170 
171 	/* Stop */
172 	cr = readl(fttmr010->base + TIMER_CR);
173 	cr &= ~fttmr010->t1_enable_val;
174 	writel(cr, fttmr010->base + TIMER_CR);
175 
176 	/* Setup counter start from 0 or ~0 */
177 	writel(0, fttmr010->base + TIMER1_COUNT);
178 	if (fttmr010->count_down)
179 		writel(~0, fttmr010->base + TIMER1_LOAD);
180 	else
181 		writel(0, fttmr010->base + TIMER1_LOAD);
182 
183 	/* Enable interrupt */
184 	cr = readl(fttmr010->base + TIMER_INTR_MASK);
185 	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
186 	cr |= TIMER_1_INT_MATCH1;
187 	writel(cr, fttmr010->base + TIMER_INTR_MASK);
188 
189 	return 0;
190 }
191 
192 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
193 {
194 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
195 	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
196 	u32 cr;
197 
198 	/* Stop */
199 	cr = readl(fttmr010->base + TIMER_CR);
200 	cr &= ~fttmr010->t1_enable_val;
201 	writel(cr, fttmr010->base + TIMER_CR);
202 
203 	/* Setup timer to fire at 1/HZ intervals. */
204 	if (fttmr010->count_down) {
205 		writel(period, fttmr010->base + TIMER1_LOAD);
206 		writel(0, fttmr010->base + TIMER1_MATCH1);
207 	} else {
208 		cr = 0xffffffff - (period - 1);
209 		writel(cr, fttmr010->base + TIMER1_COUNT);
210 		writel(cr, fttmr010->base + TIMER1_LOAD);
211 
212 		/* Enable interrupt on overflow */
213 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
214 		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
215 		cr |= TIMER_1_INT_OVERFLOW;
216 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
217 	}
218 
219 	/* Start the timer */
220 	cr = readl(fttmr010->base + TIMER_CR);
221 	cr |= fttmr010->t1_enable_val;
222 	writel(cr, fttmr010->base + TIMER_CR);
223 
224 	return 0;
225 }
226 
227 /*
228  * IRQ handler for the timer
229  */
230 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
231 {
232 	struct clock_event_device *evt = dev_id;
233 
234 	evt->event_handler(evt);
235 	return IRQ_HANDLED;
236 }
237 
238 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
239 {
240 	struct fttmr010 *fttmr010;
241 	int irq;
242 	struct clk *clk;
243 	int ret;
244 	u32 val;
245 
246 	/*
247 	 * These implementations require a clock reference.
248 	 * FIXME: we currently only support clocking using PCLK
249 	 * and using EXTCLK is not supported in the driver.
250 	 */
251 	clk = of_clk_get_by_name(np, "PCLK");
252 	if (IS_ERR(clk)) {
253 		pr_err("could not get PCLK\n");
254 		return PTR_ERR(clk);
255 	}
256 	ret = clk_prepare_enable(clk);
257 	if (ret) {
258 		pr_err("failed to enable PCLK\n");
259 		return ret;
260 	}
261 
262 	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
263 	if (!fttmr010) {
264 		ret = -ENOMEM;
265 		goto out_disable_clock;
266 	}
267 	fttmr010->tick_rate = clk_get_rate(clk);
268 
269 	fttmr010->base = of_iomap(np, 0);
270 	if (!fttmr010->base) {
271 		pr_err("Can't remap registers\n");
272 		ret = -ENXIO;
273 		goto out_free;
274 	}
275 	/* IRQ for timer 1 */
276 	irq = irq_of_parse_and_map(np, 0);
277 	if (irq <= 0) {
278 		pr_err("Can't parse IRQ\n");
279 		ret = -EINVAL;
280 		goto out_unmap;
281 	}
282 
283 	/*
284 	 * The Aspeed AST2400 moves bits around in the control register,
285 	 * otherwise it works the same.
286 	 */
287 	if (is_aspeed) {
288 		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
289 			TIMER_1_CR_ASPEED_INT;
290 		/* Downward not available */
291 		fttmr010->count_down = true;
292 	} else {
293 		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
294 	}
295 
296 	/*
297 	 * Reset the interrupt mask and status
298 	 */
299 	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
300 	writel(0, fttmr010->base + TIMER_INTR_STATE);
301 
302 	/*
303 	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
304 	 * where everything just counts down.
305 	 */
306 	if (is_aspeed)
307 		val = TIMER_2_CR_ASPEED_ENABLE;
308 	else {
309 		val = TIMER_2_CR_ENABLE;
310 		if (!fttmr010->count_down)
311 			val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
312 	}
313 	writel(val, fttmr010->base + TIMER_CR);
314 
315 	/*
316 	 * Setup free-running clocksource timer (interrupts
317 	 * disabled.)
318 	 */
319 	local_fttmr = fttmr010;
320 	writel(0, fttmr010->base + TIMER2_COUNT);
321 	writel(0, fttmr010->base + TIMER2_MATCH1);
322 	writel(0, fttmr010->base + TIMER2_MATCH2);
323 
324 	if (fttmr010->count_down) {
325 		writel(~0, fttmr010->base + TIMER2_LOAD);
326 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
327 				      "FTTMR010-TIMER2",
328 				      fttmr010->tick_rate,
329 				      300, 32, clocksource_mmio_readl_down);
330 		sched_clock_register(fttmr010_read_sched_clock_down, 32,
331 				     fttmr010->tick_rate);
332 	} else {
333 		writel(0, fttmr010->base + TIMER2_LOAD);
334 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
335 				      "FTTMR010-TIMER2",
336 				      fttmr010->tick_rate,
337 				      300, 32, clocksource_mmio_readl_up);
338 		sched_clock_register(fttmr010_read_sched_clock_up, 32,
339 				     fttmr010->tick_rate);
340 	}
341 
342 	/*
343 	 * Setup clockevent timer (interrupt-driven) on timer 1.
344 	 */
345 	writel(0, fttmr010->base + TIMER1_COUNT);
346 	writel(0, fttmr010->base + TIMER1_LOAD);
347 	writel(0, fttmr010->base + TIMER1_MATCH1);
348 	writel(0, fttmr010->base + TIMER1_MATCH2);
349 	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
350 			  "FTTMR010-TIMER1", &fttmr010->clkevt);
351 	if (ret) {
352 		pr_err("FTTMR010-TIMER1 no IRQ\n");
353 		goto out_unmap;
354 	}
355 
356 	fttmr010->clkevt.name = "FTTMR010-TIMER1";
357 	/* Reasonably fast and accurate clock event */
358 	fttmr010->clkevt.rating = 300;
359 	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
360 		CLOCK_EVT_FEAT_ONESHOT;
361 	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
362 	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
363 	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
364 	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
365 	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
366 	fttmr010->clkevt.cpumask = cpumask_of(0);
367 	fttmr010->clkevt.irq = irq;
368 	clockevents_config_and_register(&fttmr010->clkevt,
369 					fttmr010->tick_rate,
370 					1, 0xffffffff);
371 
372 #ifdef CONFIG_ARM
373 	/* Also use this timer for delays */
374 	if (fttmr010->count_down)
375 		fttmr010->delay_timer.read_current_timer =
376 			fttmr010_read_current_timer_down;
377 	else
378 		fttmr010->delay_timer.read_current_timer =
379 			fttmr010_read_current_timer_up;
380 	fttmr010->delay_timer.freq = fttmr010->tick_rate;
381 	register_current_timer_delay(&fttmr010->delay_timer);
382 #endif
383 
384 	return 0;
385 
386 out_unmap:
387 	iounmap(fttmr010->base);
388 out_free:
389 	kfree(fttmr010);
390 out_disable_clock:
391 	clk_disable_unprepare(clk);
392 
393 	return ret;
394 }
395 
396 static __init int aspeed_timer_init(struct device_node *np)
397 {
398 	return fttmr010_common_init(np, true);
399 }
400 
401 static __init int fttmr010_timer_init(struct device_node *np)
402 {
403 	return fttmr010_common_init(np, false);
404 }
405 
406 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
407 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
408 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
409 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
410 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
411