1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Faraday Technology FTTMR010 timer driver
4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5 *
6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7 * Copyright (C) 2001-2006 Storlink, Corp.
8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9 */
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
22
23 /*
24 * Register definitions common for all the timer variants.
25 */
26 #define TIMER1_COUNT (0x00)
27 #define TIMER1_LOAD (0x04)
28 #define TIMER1_MATCH1 (0x08)
29 #define TIMER1_MATCH2 (0x0c)
30 #define TIMER2_COUNT (0x10)
31 #define TIMER2_LOAD (0x14)
32 #define TIMER2_MATCH1 (0x18)
33 #define TIMER2_MATCH2 (0x1c)
34 #define TIMER3_COUNT (0x20)
35 #define TIMER3_LOAD (0x24)
36 #define TIMER3_MATCH1 (0x28)
37 #define TIMER3_MATCH2 (0x2c)
38 #define TIMER_CR (0x30)
39
40 /*
41 * Control register set to clear for ast2600 only.
42 */
43 #define AST2600_TIMER_CR_CLR (0x3c)
44
45 /*
46 * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
47 */
48 #define TIMER_1_CR_ENABLE BIT(0)
49 #define TIMER_1_CR_CLOCK BIT(1)
50 #define TIMER_1_CR_INT BIT(2)
51 #define TIMER_2_CR_ENABLE BIT(3)
52 #define TIMER_2_CR_CLOCK BIT(4)
53 #define TIMER_2_CR_INT BIT(5)
54 #define TIMER_3_CR_ENABLE BIT(6)
55 #define TIMER_3_CR_CLOCK BIT(7)
56 #define TIMER_3_CR_INT BIT(8)
57 #define TIMER_1_CR_UPDOWN BIT(9)
58 #define TIMER_2_CR_UPDOWN BIT(10)
59 #define TIMER_3_CR_UPDOWN BIT(11)
60
61 /*
62 * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
63 * The aspeed timers move bits around in the control register and lacks
64 * bits for setting the timer to count upwards.
65 */
66 #define TIMER_1_CR_ASPEED_ENABLE BIT(0)
67 #define TIMER_1_CR_ASPEED_CLOCK BIT(1)
68 #define TIMER_1_CR_ASPEED_INT BIT(2)
69 #define TIMER_2_CR_ASPEED_ENABLE BIT(4)
70 #define TIMER_2_CR_ASPEED_CLOCK BIT(5)
71 #define TIMER_2_CR_ASPEED_INT BIT(6)
72 #define TIMER_3_CR_ASPEED_ENABLE BIT(8)
73 #define TIMER_3_CR_ASPEED_CLOCK BIT(9)
74 #define TIMER_3_CR_ASPEED_INT BIT(10)
75
76 /*
77 * Interrupt status/mask register definitions for fttmr010/gemini/moxart
78 * timers.
79 * The registers don't exist and they are not needed on aspeed timers
80 * because:
81 * - aspeed timer overflow interrupt is controlled by bits in Control
82 * Register (TMC30).
83 * - aspeed timers always generate interrupt when either one of the
84 * Match registers equals to Status register.
85 */
86 #define TIMER_INTR_STATE (0x34)
87 #define TIMER_INTR_MASK (0x38)
88 #define TIMER_1_INT_MATCH1 BIT(0)
89 #define TIMER_1_INT_MATCH2 BIT(1)
90 #define TIMER_1_INT_OVERFLOW BIT(2)
91 #define TIMER_2_INT_MATCH1 BIT(3)
92 #define TIMER_2_INT_MATCH2 BIT(4)
93 #define TIMER_2_INT_OVERFLOW BIT(5)
94 #define TIMER_3_INT_MATCH1 BIT(6)
95 #define TIMER_3_INT_MATCH2 BIT(7)
96 #define TIMER_3_INT_OVERFLOW BIT(8)
97 #define TIMER_INT_ALL_MASK 0x1ff
98
99 struct fttmr010 {
100 void __iomem *base;
101 unsigned int tick_rate;
102 bool is_aspeed;
103 u32 t1_enable_val;
104 struct clock_event_device clkevt;
105 int (*timer_shutdown)(struct clock_event_device *evt);
106 #ifdef CONFIG_ARM
107 struct delay_timer delay_timer;
108 #endif
109 };
110
111 /*
112 * A local singleton used by sched_clock and delay timer reads, which are
113 * fast and stateless
114 */
115 static struct fttmr010 *local_fttmr;
116
to_fttmr010(struct clock_event_device * evt)117 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
118 {
119 return container_of(evt, struct fttmr010, clkevt);
120 }
121
fttmr010_read_current_timer_up(void)122 static unsigned long fttmr010_read_current_timer_up(void)
123 {
124 return readl(local_fttmr->base + TIMER2_COUNT);
125 }
126
fttmr010_read_current_timer_down(void)127 static unsigned long fttmr010_read_current_timer_down(void)
128 {
129 return ~readl(local_fttmr->base + TIMER2_COUNT);
130 }
131
fttmr010_read_sched_clock_up(void)132 static u64 notrace fttmr010_read_sched_clock_up(void)
133 {
134 return fttmr010_read_current_timer_up();
135 }
136
fttmr010_read_sched_clock_down(void)137 static u64 notrace fttmr010_read_sched_clock_down(void)
138 {
139 return fttmr010_read_current_timer_down();
140 }
141
fttmr010_timer_set_next_event(unsigned long cycles,struct clock_event_device * evt)142 static int fttmr010_timer_set_next_event(unsigned long cycles,
143 struct clock_event_device *evt)
144 {
145 struct fttmr010 *fttmr010 = to_fttmr010(evt);
146 u32 cr;
147
148 /* Stop */
149 fttmr010->timer_shutdown(evt);
150
151 if (fttmr010->is_aspeed) {
152 /*
153 * ASPEED Timer Controller will load TIMER1_LOAD register
154 * into TIMER1_COUNT register when the timer is re-enabled.
155 */
156 writel(cycles, fttmr010->base + TIMER1_LOAD);
157 } else {
158 /* Setup the match register forward in time */
159 cr = readl(fttmr010->base + TIMER1_COUNT);
160 writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
161 }
162
163 /* Start */
164 cr = readl(fttmr010->base + TIMER_CR);
165 cr |= fttmr010->t1_enable_val;
166 writel(cr, fttmr010->base + TIMER_CR);
167
168 return 0;
169 }
170
ast2600_timer_shutdown(struct clock_event_device * evt)171 static int ast2600_timer_shutdown(struct clock_event_device *evt)
172 {
173 struct fttmr010 *fttmr010 = to_fttmr010(evt);
174
175 /* Stop */
176 writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
177
178 return 0;
179 }
180
fttmr010_timer_shutdown(struct clock_event_device * evt)181 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
182 {
183 struct fttmr010 *fttmr010 = to_fttmr010(evt);
184 u32 cr;
185
186 /* Stop */
187 cr = readl(fttmr010->base + TIMER_CR);
188 cr &= ~fttmr010->t1_enable_val;
189 writel(cr, fttmr010->base + TIMER_CR);
190
191 return 0;
192 }
193
fttmr010_timer_set_oneshot(struct clock_event_device * evt)194 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
195 {
196 struct fttmr010 *fttmr010 = to_fttmr010(evt);
197 u32 cr;
198
199 /* Stop */
200 fttmr010->timer_shutdown(evt);
201
202 /* Setup counter start from 0 or ~0 */
203 writel(0, fttmr010->base + TIMER1_COUNT);
204 if (fttmr010->is_aspeed) {
205 writel(~0, fttmr010->base + TIMER1_LOAD);
206 } else {
207 writel(0, fttmr010->base + TIMER1_LOAD);
208
209 /* Enable interrupt */
210 cr = readl(fttmr010->base + TIMER_INTR_MASK);
211 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
212 cr |= TIMER_1_INT_MATCH1;
213 writel(cr, fttmr010->base + TIMER_INTR_MASK);
214 }
215
216 return 0;
217 }
218
fttmr010_timer_set_periodic(struct clock_event_device * evt)219 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
220 {
221 struct fttmr010 *fttmr010 = to_fttmr010(evt);
222 u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
223 u32 cr;
224
225 /* Stop */
226 fttmr010->timer_shutdown(evt);
227
228 /* Setup timer to fire at 1/HZ intervals. */
229 if (fttmr010->is_aspeed) {
230 writel(period, fttmr010->base + TIMER1_LOAD);
231 } else {
232 cr = 0xffffffff - (period - 1);
233 writel(cr, fttmr010->base + TIMER1_COUNT);
234 writel(cr, fttmr010->base + TIMER1_LOAD);
235
236 /* Enable interrupt on overflow */
237 cr = readl(fttmr010->base + TIMER_INTR_MASK);
238 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
239 cr |= TIMER_1_INT_OVERFLOW;
240 writel(cr, fttmr010->base + TIMER_INTR_MASK);
241 }
242
243 /* Start the timer */
244 cr = readl(fttmr010->base + TIMER_CR);
245 cr |= fttmr010->t1_enable_val;
246 writel(cr, fttmr010->base + TIMER_CR);
247
248 return 0;
249 }
250
251 /*
252 * IRQ handler for the timer
253 */
fttmr010_timer_interrupt(int irq,void * dev_id)254 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
255 {
256 struct clock_event_device *evt = dev_id;
257
258 evt->event_handler(evt);
259 return IRQ_HANDLED;
260 }
261
ast2600_timer_interrupt(int irq,void * dev_id)262 static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
263 {
264 struct clock_event_device *evt = dev_id;
265 struct fttmr010 *fttmr010 = to_fttmr010(evt);
266
267 writel(0x1, fttmr010->base + TIMER_INTR_STATE);
268
269 evt->event_handler(evt);
270 return IRQ_HANDLED;
271 }
272
fttmr010_common_init(struct device_node * np,bool is_aspeed,bool is_ast2600)273 static int __init fttmr010_common_init(struct device_node *np,
274 bool is_aspeed, bool is_ast2600)
275 {
276 struct fttmr010 *fttmr010;
277 int irq;
278 struct clk *clk;
279 int ret;
280 u32 val;
281
282 /*
283 * These implementations require a clock reference.
284 * FIXME: we currently only support clocking using PCLK
285 * and using EXTCLK is not supported in the driver.
286 */
287 clk = of_clk_get_by_name(np, "PCLK");
288 if (IS_ERR(clk)) {
289 pr_err("could not get PCLK\n");
290 return PTR_ERR(clk);
291 }
292 ret = clk_prepare_enable(clk);
293 if (ret) {
294 pr_err("failed to enable PCLK\n");
295 return ret;
296 }
297
298 fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
299 if (!fttmr010) {
300 ret = -ENOMEM;
301 goto out_disable_clock;
302 }
303 fttmr010->tick_rate = clk_get_rate(clk);
304
305 fttmr010->base = of_iomap(np, 0);
306 if (!fttmr010->base) {
307 pr_err("Can't remap registers\n");
308 ret = -ENXIO;
309 goto out_free;
310 }
311 /* IRQ for timer 1 */
312 irq = irq_of_parse_and_map(np, 0);
313 if (irq <= 0) {
314 pr_err("Can't parse IRQ\n");
315 ret = -EINVAL;
316 goto out_unmap;
317 }
318
319 /*
320 * The Aspeed timers move bits around in the control register.
321 */
322 if (is_aspeed) {
323 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
324 TIMER_1_CR_ASPEED_INT;
325 fttmr010->is_aspeed = true;
326 } else {
327 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
328
329 /*
330 * Reset the interrupt mask and status
331 */
332 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
333 writel(0, fttmr010->base + TIMER_INTR_STATE);
334 }
335
336 /*
337 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
338 * where everything just counts down.
339 */
340 if (is_aspeed)
341 val = TIMER_2_CR_ASPEED_ENABLE;
342 else {
343 val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
344 TIMER_2_CR_UPDOWN;
345 }
346 writel(val, fttmr010->base + TIMER_CR);
347
348 /*
349 * Setup free-running clocksource timer (interrupts
350 * disabled.)
351 */
352 local_fttmr = fttmr010;
353 writel(0, fttmr010->base + TIMER2_COUNT);
354 writel(0, fttmr010->base + TIMER2_MATCH1);
355 writel(0, fttmr010->base + TIMER2_MATCH2);
356
357 if (fttmr010->is_aspeed) {
358 writel(~0, fttmr010->base + TIMER2_LOAD);
359 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
360 "FTTMR010-TIMER2",
361 fttmr010->tick_rate,
362 300, 32, clocksource_mmio_readl_down);
363 sched_clock_register(fttmr010_read_sched_clock_down, 32,
364 fttmr010->tick_rate);
365 } else {
366 writel(0, fttmr010->base + TIMER2_LOAD);
367 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
368 "FTTMR010-TIMER2",
369 fttmr010->tick_rate,
370 300, 32, clocksource_mmio_readl_up);
371 sched_clock_register(fttmr010_read_sched_clock_up, 32,
372 fttmr010->tick_rate);
373 }
374
375 /*
376 * Setup clockevent timer (interrupt-driven) on timer 1.
377 */
378 writel(0, fttmr010->base + TIMER1_COUNT);
379 writel(0, fttmr010->base + TIMER1_LOAD);
380 writel(0, fttmr010->base + TIMER1_MATCH1);
381 writel(0, fttmr010->base + TIMER1_MATCH2);
382
383 if (is_ast2600) {
384 fttmr010->timer_shutdown = ast2600_timer_shutdown;
385 ret = request_irq(irq, ast2600_timer_interrupt,
386 IRQF_TIMER, "FTTMR010-TIMER1",
387 &fttmr010->clkevt);
388 } else {
389 fttmr010->timer_shutdown = fttmr010_timer_shutdown;
390 ret = request_irq(irq, fttmr010_timer_interrupt,
391 IRQF_TIMER, "FTTMR010-TIMER1",
392 &fttmr010->clkevt);
393 }
394 if (ret) {
395 pr_err("FTTMR010-TIMER1 no IRQ\n");
396 goto out_unmap;
397 }
398
399 fttmr010->clkevt.name = "FTTMR010-TIMER1";
400 /* Reasonably fast and accurate clock event */
401 fttmr010->clkevt.rating = 300;
402 fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
403 CLOCK_EVT_FEAT_ONESHOT;
404 fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
405 fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
406 fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
407 fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
408 fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
409 fttmr010->clkevt.cpumask = cpumask_of(0);
410 fttmr010->clkevt.irq = irq;
411 clockevents_config_and_register(&fttmr010->clkevt,
412 fttmr010->tick_rate,
413 1, 0xffffffff);
414
415 #ifdef CONFIG_ARM
416 /* Also use this timer for delays */
417 if (fttmr010->is_aspeed)
418 fttmr010->delay_timer.read_current_timer =
419 fttmr010_read_current_timer_down;
420 else
421 fttmr010->delay_timer.read_current_timer =
422 fttmr010_read_current_timer_up;
423 fttmr010->delay_timer.freq = fttmr010->tick_rate;
424 register_current_timer_delay(&fttmr010->delay_timer);
425 #endif
426
427 return 0;
428
429 out_unmap:
430 iounmap(fttmr010->base);
431 out_free:
432 kfree(fttmr010);
433 out_disable_clock:
434 clk_disable_unprepare(clk);
435
436 return ret;
437 }
438
ast2600_timer_init(struct device_node * np)439 static __init int ast2600_timer_init(struct device_node *np)
440 {
441 return fttmr010_common_init(np, true, true);
442 }
443
aspeed_timer_init(struct device_node * np)444 static __init int aspeed_timer_init(struct device_node *np)
445 {
446 return fttmr010_common_init(np, true, false);
447 }
448
fttmr010_timer_init(struct device_node * np)449 static __init int fttmr010_timer_init(struct device_node *np)
450 {
451 return fttmr010_common_init(np, false, false);
452 }
453
454 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
455 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
456 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
457 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
458 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
459 TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
460