1 /* 2 * Freescale FlexTimer Module (FTM) timer driver. 3 * 4 * Copyright 2014 Freescale Semiconductor, Inc. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clockchips.h> 14 #include <linux/clocksource.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <linux/sched_clock.h> 21 #include <linux/slab.h> 22 #include <linux/fsl/ftm.h> 23 24 #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT) 25 26 struct ftm_clock_device { 27 void __iomem *clksrc_base; 28 void __iomem *clkevt_base; 29 unsigned long periodic_cyc; 30 unsigned long ps; 31 bool big_endian; 32 }; 33 34 static struct ftm_clock_device *priv; 35 36 static inline u32 ftm_readl(void __iomem *addr) 37 { 38 if (priv->big_endian) 39 return ioread32be(addr); 40 else 41 return ioread32(addr); 42 } 43 44 static inline void ftm_writel(u32 val, void __iomem *addr) 45 { 46 if (priv->big_endian) 47 iowrite32be(val, addr); 48 else 49 iowrite32(val, addr); 50 } 51 52 static inline void ftm_counter_enable(void __iomem *base) 53 { 54 u32 val; 55 56 /* select and enable counter clock source */ 57 val = ftm_readl(base + FTM_SC); 58 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); 59 val |= priv->ps | FTM_SC_CLK(1); 60 ftm_writel(val, base + FTM_SC); 61 } 62 63 static inline void ftm_counter_disable(void __iomem *base) 64 { 65 u32 val; 66 67 /* disable counter clock source */ 68 val = ftm_readl(base + FTM_SC); 69 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); 70 ftm_writel(val, base + FTM_SC); 71 } 72 73 static inline void ftm_irq_acknowledge(void __iomem *base) 74 { 75 u32 val; 76 77 val = ftm_readl(base + FTM_SC); 78 val &= ~FTM_SC_TOF; 79 ftm_writel(val, base + FTM_SC); 80 } 81 82 static inline void ftm_irq_enable(void __iomem *base) 83 { 84 u32 val; 85 86 val = ftm_readl(base + FTM_SC); 87 val |= FTM_SC_TOIE; 88 ftm_writel(val, base + FTM_SC); 89 } 90 91 static inline void ftm_irq_disable(void __iomem *base) 92 { 93 u32 val; 94 95 val = ftm_readl(base + FTM_SC); 96 val &= ~FTM_SC_TOIE; 97 ftm_writel(val, base + FTM_SC); 98 } 99 100 static inline void ftm_reset_counter(void __iomem *base) 101 { 102 /* 103 * The CNT register contains the FTM counter value. 104 * Reset clears the CNT register. Writing any value to COUNT 105 * updates the counter with its initial value, CNTIN. 106 */ 107 ftm_writel(0x00, base + FTM_CNT); 108 } 109 110 static u64 notrace ftm_read_sched_clock(void) 111 { 112 return ftm_readl(priv->clksrc_base + FTM_CNT); 113 } 114 115 static int ftm_set_next_event(unsigned long delta, 116 struct clock_event_device *unused) 117 { 118 /* 119 * The CNNIN and MOD are all double buffer registers, writing 120 * to the MOD register latches the value into a buffer. The MOD 121 * register is updated with the value of its write buffer with 122 * the following scenario: 123 * a, the counter source clock is diabled. 124 */ 125 ftm_counter_disable(priv->clkevt_base); 126 127 /* Force the value of CNTIN to be loaded into the FTM counter */ 128 ftm_reset_counter(priv->clkevt_base); 129 130 /* 131 * The counter increments until the value of MOD is reached, 132 * at which point the counter is reloaded with the value of CNTIN. 133 * The TOF (the overflow flag) bit is set when the FTM counter 134 * changes from MOD to CNTIN. So we should using the delta - 1. 135 */ 136 ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD); 137 138 ftm_counter_enable(priv->clkevt_base); 139 140 ftm_irq_enable(priv->clkevt_base); 141 142 return 0; 143 } 144 145 static int ftm_set_oneshot(struct clock_event_device *evt) 146 { 147 ftm_counter_disable(priv->clkevt_base); 148 return 0; 149 } 150 151 static int ftm_set_periodic(struct clock_event_device *evt) 152 { 153 ftm_set_next_event(priv->periodic_cyc, evt); 154 return 0; 155 } 156 157 static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id) 158 { 159 struct clock_event_device *evt = dev_id; 160 161 ftm_irq_acknowledge(priv->clkevt_base); 162 163 if (likely(clockevent_state_oneshot(evt))) { 164 ftm_irq_disable(priv->clkevt_base); 165 ftm_counter_disable(priv->clkevt_base); 166 } 167 168 evt->event_handler(evt); 169 170 return IRQ_HANDLED; 171 } 172 173 static struct clock_event_device ftm_clockevent = { 174 .name = "Freescale ftm timer", 175 .features = CLOCK_EVT_FEAT_PERIODIC | 176 CLOCK_EVT_FEAT_ONESHOT, 177 .set_state_periodic = ftm_set_periodic, 178 .set_state_oneshot = ftm_set_oneshot, 179 .set_next_event = ftm_set_next_event, 180 .rating = 300, 181 }; 182 183 static struct irqaction ftm_timer_irq = { 184 .name = "Freescale ftm timer", 185 .flags = IRQF_TIMER | IRQF_IRQPOLL, 186 .handler = ftm_evt_interrupt, 187 .dev_id = &ftm_clockevent, 188 }; 189 190 static int __init ftm_clockevent_init(unsigned long freq, int irq) 191 { 192 int err; 193 194 ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN); 195 ftm_writel(~0u, priv->clkevt_base + FTM_MOD); 196 197 ftm_reset_counter(priv->clkevt_base); 198 199 err = setup_irq(irq, &ftm_timer_irq); 200 if (err) { 201 pr_err("ftm: setup irq failed: %d\n", err); 202 return err; 203 } 204 205 ftm_clockevent.cpumask = cpumask_of(0); 206 ftm_clockevent.irq = irq; 207 208 clockevents_config_and_register(&ftm_clockevent, 209 freq / (1 << priv->ps), 210 1, 0xffff); 211 212 ftm_counter_enable(priv->clkevt_base); 213 214 return 0; 215 } 216 217 static int __init ftm_clocksource_init(unsigned long freq) 218 { 219 int err; 220 221 ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN); 222 ftm_writel(~0u, priv->clksrc_base + FTM_MOD); 223 224 ftm_reset_counter(priv->clksrc_base); 225 226 sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps)); 227 err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm", 228 freq / (1 << priv->ps), 300, 16, 229 clocksource_mmio_readl_up); 230 if (err) { 231 pr_err("ftm: init clock source mmio failed: %d\n", err); 232 return err; 233 } 234 235 ftm_counter_enable(priv->clksrc_base); 236 237 return 0; 238 } 239 240 static int __init __ftm_clk_init(struct device_node *np, char *cnt_name, 241 char *ftm_name) 242 { 243 struct clk *clk; 244 int err; 245 246 clk = of_clk_get_by_name(np, cnt_name); 247 if (IS_ERR(clk)) { 248 pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk)); 249 return PTR_ERR(clk); 250 } 251 err = clk_prepare_enable(clk); 252 if (err) { 253 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n", 254 cnt_name, err); 255 return err; 256 } 257 258 clk = of_clk_get_by_name(np, ftm_name); 259 if (IS_ERR(clk)) { 260 pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk)); 261 return PTR_ERR(clk); 262 } 263 err = clk_prepare_enable(clk); 264 if (err) 265 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n", 266 ftm_name, err); 267 268 return clk_get_rate(clk); 269 } 270 271 static unsigned long __init ftm_clk_init(struct device_node *np) 272 { 273 long freq; 274 275 freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt"); 276 if (freq <= 0) 277 return 0; 278 279 freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src"); 280 if (freq <= 0) 281 return 0; 282 283 return freq; 284 } 285 286 static int __init ftm_calc_closest_round_cyc(unsigned long freq) 287 { 288 priv->ps = 0; 289 290 /* The counter register is only using the lower 16 bits, and 291 * if the 'freq' value is to big here, then the periodic_cyc 292 * may exceed 0xFFFF. 293 */ 294 do { 295 priv->periodic_cyc = DIV_ROUND_CLOSEST(freq, 296 HZ * (1 << priv->ps++)); 297 } while (priv->periodic_cyc > 0xFFFF); 298 299 if (priv->ps > FTM_PS_MAX) { 300 pr_err("ftm: the prescaler is %lu > %d\n", 301 priv->ps, FTM_PS_MAX); 302 return -EINVAL; 303 } 304 305 return 0; 306 } 307 308 static int __init ftm_timer_init(struct device_node *np) 309 { 310 unsigned long freq; 311 int ret, irq; 312 313 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 314 if (!priv) 315 return -ENOMEM; 316 317 ret = -ENXIO; 318 priv->clkevt_base = of_iomap(np, 0); 319 if (!priv->clkevt_base) { 320 pr_err("ftm: unable to map event timer registers\n"); 321 goto err_clkevt; 322 } 323 324 priv->clksrc_base = of_iomap(np, 1); 325 if (!priv->clksrc_base) { 326 pr_err("ftm: unable to map source timer registers\n"); 327 goto err_clksrc; 328 } 329 330 ret = -EINVAL; 331 irq = irq_of_parse_and_map(np, 0); 332 if (irq <= 0) { 333 pr_err("ftm: unable to get IRQ from DT, %d\n", irq); 334 goto err; 335 } 336 337 priv->big_endian = of_property_read_bool(np, "big-endian"); 338 339 freq = ftm_clk_init(np); 340 if (!freq) 341 goto err; 342 343 ret = ftm_calc_closest_round_cyc(freq); 344 if (ret) 345 goto err; 346 347 ret = ftm_clocksource_init(freq); 348 if (ret) 349 goto err; 350 351 ret = ftm_clockevent_init(freq, irq); 352 if (ret) 353 goto err; 354 355 return 0; 356 357 err: 358 iounmap(priv->clksrc_base); 359 err_clksrc: 360 iounmap(priv->clkevt_base); 361 err_clkevt: 362 kfree(priv); 363 return ret; 364 } 365 TIMER_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init); 366