xref: /openbmc/linux/drivers/clocksource/timer-digicolor.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Conexant Digicolor timer driver
3  *
4  * Author: Baruch Siach <baruch@tkos.co.il>
5  *
6  * Copyright (C) 2014 Paradox Innovation Ltd.
7  *
8  * Based on:
9  *	Allwinner SoCs hstimer driver
10  *
11  * Copyright (C) 2013 Maxime Ripard
12  *
13  * Maxime Ripard <maxime.ripard@free-electrons.com>
14  *
15  * This file is licensed under the terms of the GNU General Public
16  * License version 2.  This program is licensed "as is" without any
17  * warranty of any kind, whether express or implied.
18  */
19 
20 /*
21  * Conexant Digicolor SoCs have 8 configurable timers, named from "Timer A" to
22  * "Timer H". Timer A is the only one with watchdog support, so it is dedicated
23  * to the watchdog driver. This driver uses Timer B for sched_clock(), and
24  * Timer C for clockevents.
25  */
26 
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 
29 #include <linux/clk.h>
30 #include <linux/clockchips.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/irqreturn.h>
34 #include <linux/sched/clock.h>
35 #include <linux/sched_clock.h>
36 #include <linux/of.h>
37 #include <linux/of_address.h>
38 #include <linux/of_irq.h>
39 
40 enum {
41 	TIMER_A,
42 	TIMER_B,
43 	TIMER_C,
44 	TIMER_D,
45 	TIMER_E,
46 	TIMER_F,
47 	TIMER_G,
48 	TIMER_H,
49 };
50 
51 #define CONTROL(t)	((t)*8)
52 #define COUNT(t)	((t)*8 + 4)
53 
54 #define CONTROL_DISABLE		0
55 #define CONTROL_ENABLE		BIT(0)
56 #define CONTROL_MODE(m)		((m) << 4)
57 #define CONTROL_MODE_ONESHOT	CONTROL_MODE(1)
58 #define CONTROL_MODE_PERIODIC	CONTROL_MODE(2)
59 
60 struct digicolor_timer {
61 	struct clock_event_device ce;
62 	void __iomem *base;
63 	u32 ticks_per_jiffy;
64 	int timer_id; /* one of TIMER_* */
65 };
66 
67 static struct digicolor_timer *dc_timer(struct clock_event_device *ce)
68 {
69 	return container_of(ce, struct digicolor_timer, ce);
70 }
71 
72 static inline void dc_timer_disable(struct clock_event_device *ce)
73 {
74 	struct digicolor_timer *dt = dc_timer(ce);
75 	writeb(CONTROL_DISABLE, dt->base + CONTROL(dt->timer_id));
76 }
77 
78 static inline void dc_timer_enable(struct clock_event_device *ce, u32 mode)
79 {
80 	struct digicolor_timer *dt = dc_timer(ce);
81 	writeb(CONTROL_ENABLE | mode, dt->base + CONTROL(dt->timer_id));
82 }
83 
84 static inline void dc_timer_set_count(struct clock_event_device *ce,
85 				      unsigned long count)
86 {
87 	struct digicolor_timer *dt = dc_timer(ce);
88 	writel(count, dt->base + COUNT(dt->timer_id));
89 }
90 
91 static int digicolor_clkevt_shutdown(struct clock_event_device *ce)
92 {
93 	dc_timer_disable(ce);
94 	return 0;
95 }
96 
97 static int digicolor_clkevt_set_oneshot(struct clock_event_device *ce)
98 {
99 	dc_timer_disable(ce);
100 	dc_timer_enable(ce, CONTROL_MODE_ONESHOT);
101 	return 0;
102 }
103 
104 static int digicolor_clkevt_set_periodic(struct clock_event_device *ce)
105 {
106 	struct digicolor_timer *dt = dc_timer(ce);
107 
108 	dc_timer_disable(ce);
109 	dc_timer_set_count(ce, dt->ticks_per_jiffy);
110 	dc_timer_enable(ce, CONTROL_MODE_PERIODIC);
111 	return 0;
112 }
113 
114 static int digicolor_clkevt_next_event(unsigned long evt,
115 				       struct clock_event_device *ce)
116 {
117 	dc_timer_disable(ce);
118 	dc_timer_set_count(ce, evt);
119 	dc_timer_enable(ce, CONTROL_MODE_ONESHOT);
120 
121 	return 0;
122 }
123 
124 static struct digicolor_timer dc_timer_dev = {
125 	.ce = {
126 		.name = "digicolor_tick",
127 		.rating = 340,
128 		.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
129 		.set_state_shutdown = digicolor_clkevt_shutdown,
130 		.set_state_periodic = digicolor_clkevt_set_periodic,
131 		.set_state_oneshot = digicolor_clkevt_set_oneshot,
132 		.tick_resume = digicolor_clkevt_shutdown,
133 		.set_next_event = digicolor_clkevt_next_event,
134 	},
135 	.timer_id = TIMER_C,
136 };
137 
138 static irqreturn_t digicolor_timer_interrupt(int irq, void *dev_id)
139 {
140 	struct clock_event_device *evt = dev_id;
141 
142 	evt->event_handler(evt);
143 
144 	return IRQ_HANDLED;
145 }
146 
147 static u64 notrace digicolor_timer_sched_read(void)
148 {
149 	return ~readl(dc_timer_dev.base + COUNT(TIMER_B));
150 }
151 
152 static int __init digicolor_timer_init(struct device_node *node)
153 {
154 	unsigned long rate;
155 	struct clk *clk;
156 	int ret, irq;
157 
158 	/*
159 	 * timer registers are shared with the watchdog timer;
160 	 * don't map exclusively
161 	 */
162 	dc_timer_dev.base = of_iomap(node, 0);
163 	if (!dc_timer_dev.base) {
164 		pr_err("Can't map registers\n");
165 		return -ENXIO;
166 	}
167 
168 	irq = irq_of_parse_and_map(node, dc_timer_dev.timer_id);
169 	if (irq <= 0) {
170 		pr_err("Can't parse IRQ\n");
171 		return -EINVAL;
172 	}
173 
174 	clk = of_clk_get(node, 0);
175 	if (IS_ERR(clk)) {
176 		pr_err("Can't get timer clock\n");
177 		return PTR_ERR(clk);
178 	}
179 	clk_prepare_enable(clk);
180 	rate = clk_get_rate(clk);
181 	dc_timer_dev.ticks_per_jiffy = DIV_ROUND_UP(rate, HZ);
182 
183 	writeb(CONTROL_DISABLE, dc_timer_dev.base + CONTROL(TIMER_B));
184 	writel(UINT_MAX, dc_timer_dev.base + COUNT(TIMER_B));
185 	writeb(CONTROL_ENABLE, dc_timer_dev.base + CONTROL(TIMER_B));
186 
187 	sched_clock_register(digicolor_timer_sched_read, 32, rate);
188 	clocksource_mmio_init(dc_timer_dev.base + COUNT(TIMER_B), node->name,
189 			      rate, 340, 32, clocksource_mmio_readl_down);
190 
191 	ret = request_irq(irq, digicolor_timer_interrupt,
192 			  IRQF_TIMER | IRQF_IRQPOLL, "digicolor_timerC",
193 			  &dc_timer_dev.ce);
194 	if (ret) {
195 		pr_warn("request of timer irq %d failed (%d)\n", irq, ret);
196 		return ret;
197 	}
198 
199 	dc_timer_dev.ce.cpumask = cpu_possible_mask;
200 	dc_timer_dev.ce.irq = irq;
201 
202 	clockevents_config_and_register(&dc_timer_dev.ce, rate, 0, 0xffffffff);
203 
204 	return 0;
205 }
206 TIMER_OF_DECLARE(conexant_digicolor, "cnxt,cx92755-timer",
207 		       digicolor_timer_init);
208