xref: /openbmc/linux/drivers/clocksource/timer-atmel-st.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * linux/arch/arm/mach-at91/at91rm9200_time.c
4  *
5  *  Copyright (C) 2003 SAN People
6  *  Copyright (C) 2003 ATMEL
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/clk.h>
13 #include <linux/clockchips.h>
14 #include <linux/export.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/mfd/syscon/atmel-st.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
19 
20 static unsigned long last_crtr;
21 static u32 irqmask;
22 static struct clock_event_device clkevt;
23 static struct regmap *regmap_st;
24 static int timer_latch;
25 
26 /*
27  * The ST_CRTR is updated asynchronously to the master clock ... but
28  * the updates as seen by the CPU don't seem to be strictly monotonic.
29  * Waiting until we read the same value twice avoids glitching.
30  */
31 static inline unsigned long read_CRTR(void)
32 {
33 	unsigned int x1, x2;
34 
35 	regmap_read(regmap_st, AT91_ST_CRTR, &x1);
36 	do {
37 		regmap_read(regmap_st, AT91_ST_CRTR, &x2);
38 		if (x1 == x2)
39 			break;
40 		x1 = x2;
41 	} while (1);
42 	return x1;
43 }
44 
45 /*
46  * IRQ handler for the timer.
47  */
48 static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id)
49 {
50 	u32 sr;
51 
52 	regmap_read(regmap_st, AT91_ST_SR, &sr);
53 	sr &= irqmask;
54 
55 	/*
56 	 * irqs should be disabled here, but as the irq is shared they are only
57 	 * guaranteed to be off if the timer irq is registered first.
58 	 */
59 	WARN_ON_ONCE(!irqs_disabled());
60 
61 	/* simulate "oneshot" timer with alarm */
62 	if (sr & AT91_ST_ALMS) {
63 		clkevt.event_handler(&clkevt);
64 		return IRQ_HANDLED;
65 	}
66 
67 	/* periodic mode should handle delayed ticks */
68 	if (sr & AT91_ST_PITS) {
69 		u32	crtr = read_CRTR();
70 
71 		while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) {
72 			last_crtr += timer_latch;
73 			clkevt.event_handler(&clkevt);
74 		}
75 		return IRQ_HANDLED;
76 	}
77 
78 	/* this irq is shared ... */
79 	return IRQ_NONE;
80 }
81 
82 static u64 read_clk32k(struct clocksource *cs)
83 {
84 	return read_CRTR();
85 }
86 
87 static struct clocksource clk32k = {
88 	.name		= "32k_counter",
89 	.rating		= 150,
90 	.read		= read_clk32k,
91 	.mask		= CLOCKSOURCE_MASK(20),
92 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
93 };
94 
95 static void clkdev32k_disable_and_flush_irq(void)
96 {
97 	unsigned int val;
98 
99 	/* Disable and flush pending timer interrupts */
100 	regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS);
101 	regmap_read(regmap_st, AT91_ST_SR, &val);
102 	last_crtr = read_CRTR();
103 }
104 
105 static int clkevt32k_shutdown(struct clock_event_device *evt)
106 {
107 	clkdev32k_disable_and_flush_irq();
108 	irqmask = 0;
109 	regmap_write(regmap_st, AT91_ST_IER, irqmask);
110 	return 0;
111 }
112 
113 static int clkevt32k_set_oneshot(struct clock_event_device *dev)
114 {
115 	clkdev32k_disable_and_flush_irq();
116 
117 	/*
118 	 * ALM for oneshot irqs, set by next_event()
119 	 * before 32 seconds have passed.
120 	 */
121 	irqmask = AT91_ST_ALMS;
122 	regmap_write(regmap_st, AT91_ST_RTAR, last_crtr);
123 	regmap_write(regmap_st, AT91_ST_IER, irqmask);
124 	return 0;
125 }
126 
127 static int clkevt32k_set_periodic(struct clock_event_device *dev)
128 {
129 	clkdev32k_disable_and_flush_irq();
130 
131 	/* PIT for periodic irqs; fixed rate of 1/HZ */
132 	irqmask = AT91_ST_PITS;
133 	regmap_write(regmap_st, AT91_ST_PIMR, timer_latch);
134 	regmap_write(regmap_st, AT91_ST_IER, irqmask);
135 	return 0;
136 }
137 
138 static int
139 clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev)
140 {
141 	u32		alm;
142 	int		status = 0;
143 	unsigned int	val;
144 
145 	BUG_ON(delta < 2);
146 
147 	/* The alarm IRQ uses absolute time (now+delta), not the relative
148 	 * time (delta) in our calling convention.  Like all clockevents
149 	 * using such "match" hardware, we have a race to defend against.
150 	 *
151 	 * Our defense here is to have set up the clockevent device so the
152 	 * delta is at least two.  That way we never end up writing RTAR
153 	 * with the value then held in CRTR ... which would mean the match
154 	 * wouldn't trigger until 32 seconds later, after CRTR wraps.
155 	 */
156 	alm = read_CRTR();
157 
158 	/* Cancel any pending alarm; flush any pending IRQ */
159 	regmap_write(regmap_st, AT91_ST_RTAR, alm);
160 	regmap_read(regmap_st, AT91_ST_SR, &val);
161 
162 	/* Schedule alarm by writing RTAR. */
163 	alm += delta;
164 	regmap_write(regmap_st, AT91_ST_RTAR, alm);
165 
166 	return status;
167 }
168 
169 static struct clock_event_device clkevt = {
170 	.name			= "at91_tick",
171 	.features		= CLOCK_EVT_FEAT_PERIODIC |
172 				  CLOCK_EVT_FEAT_ONESHOT,
173 	.rating			= 150,
174 	.set_next_event		= clkevt32k_next_event,
175 	.set_state_shutdown	= clkevt32k_shutdown,
176 	.set_state_periodic	= clkevt32k_set_periodic,
177 	.set_state_oneshot	= clkevt32k_set_oneshot,
178 	.tick_resume		= clkevt32k_shutdown,
179 };
180 
181 /*
182  * ST (system timer) module supports both clockevents and clocksource.
183  */
184 static int __init atmel_st_timer_init(struct device_node *node)
185 {
186 	struct clk *sclk;
187 	unsigned int sclk_rate, val;
188 	int irq, ret;
189 
190 	regmap_st = syscon_node_to_regmap(node);
191 	if (IS_ERR(regmap_st)) {
192 		pr_err("Unable to get regmap\n");
193 		return PTR_ERR(regmap_st);
194 	}
195 
196 	/* Disable all timer interrupts, and clear any pending ones */
197 	regmap_write(regmap_st, AT91_ST_IDR,
198 		AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
199 	regmap_read(regmap_st, AT91_ST_SR, &val);
200 
201 	/* Get the interrupts property */
202 	irq  = irq_of_parse_and_map(node, 0);
203 	if (!irq) {
204 		pr_err("Unable to get IRQ from DT\n");
205 		return -EINVAL;
206 	}
207 
208 	/* Make IRQs happen for the system timer */
209 	ret = request_irq(irq, at91rm9200_timer_interrupt,
210 			  IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL,
211 			  "at91_tick", regmap_st);
212 	if (ret) {
213 		pr_err("Unable to setup IRQ\n");
214 		return ret;
215 	}
216 
217 	sclk = of_clk_get(node, 0);
218 	if (IS_ERR(sclk)) {
219 		pr_err("Unable to get slow clock\n");
220 		return PTR_ERR(sclk);
221 	}
222 
223 	ret = clk_prepare_enable(sclk);
224 	if (ret) {
225 		pr_err("Could not enable slow clock\n");
226 		return ret;
227 	}
228 
229 	sclk_rate = clk_get_rate(sclk);
230 	if (!sclk_rate) {
231 		pr_err("Invalid slow clock rate\n");
232 		return -EINVAL;
233 	}
234 	timer_latch = (sclk_rate + HZ / 2) / HZ;
235 
236 	/* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
237 	 * directly for the clocksource and all clockevents, after adjusting
238 	 * its prescaler from the 1 Hz default.
239 	 */
240 	regmap_write(regmap_st, AT91_ST_RTMR, 1);
241 
242 	/* Setup timer clockevent, with minimum of two ticks (important!!) */
243 	clkevt.cpumask = cpumask_of(0);
244 	clockevents_config_and_register(&clkevt, sclk_rate,
245 					2, AT91_ST_ALMV);
246 
247 	/* register clocksource */
248 	return clocksource_register_hz(&clk32k, sclk_rate);
249 }
250 TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st",
251 		       atmel_st_timer_init);
252