xref: /openbmc/linux/drivers/clocksource/timer-atmel-st.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * linux/arch/arm/mach-at91/at91rm9200_time.c
3  *
4  *  Copyright (C) 2003 SAN People
5  *  Copyright (C) 2003 ATMEL
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/clk.h>
26 #include <linux/clockchips.h>
27 #include <linux/export.h>
28 #include <linux/mfd/syscon.h>
29 #include <linux/mfd/syscon/atmel-st.h>
30 #include <linux/of_irq.h>
31 #include <linux/regmap.h>
32 
33 static unsigned long last_crtr;
34 static u32 irqmask;
35 static struct clock_event_device clkevt;
36 static struct regmap *regmap_st;
37 static int timer_latch;
38 
39 /*
40  * The ST_CRTR is updated asynchronously to the master clock ... but
41  * the updates as seen by the CPU don't seem to be strictly monotonic.
42  * Waiting until we read the same value twice avoids glitching.
43  */
44 static inline unsigned long read_CRTR(void)
45 {
46 	unsigned int x1, x2;
47 
48 	regmap_read(regmap_st, AT91_ST_CRTR, &x1);
49 	do {
50 		regmap_read(regmap_st, AT91_ST_CRTR, &x2);
51 		if (x1 == x2)
52 			break;
53 		x1 = x2;
54 	} while (1);
55 	return x1;
56 }
57 
58 /*
59  * IRQ handler for the timer.
60  */
61 static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id)
62 {
63 	u32 sr;
64 
65 	regmap_read(regmap_st, AT91_ST_SR, &sr);
66 	sr &= irqmask;
67 
68 	/*
69 	 * irqs should be disabled here, but as the irq is shared they are only
70 	 * guaranteed to be off if the timer irq is registered first.
71 	 */
72 	WARN_ON_ONCE(!irqs_disabled());
73 
74 	/* simulate "oneshot" timer with alarm */
75 	if (sr & AT91_ST_ALMS) {
76 		clkevt.event_handler(&clkevt);
77 		return IRQ_HANDLED;
78 	}
79 
80 	/* periodic mode should handle delayed ticks */
81 	if (sr & AT91_ST_PITS) {
82 		u32	crtr = read_CRTR();
83 
84 		while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) {
85 			last_crtr += timer_latch;
86 			clkevt.event_handler(&clkevt);
87 		}
88 		return IRQ_HANDLED;
89 	}
90 
91 	/* this irq is shared ... */
92 	return IRQ_NONE;
93 }
94 
95 static u64 read_clk32k(struct clocksource *cs)
96 {
97 	return read_CRTR();
98 }
99 
100 static struct clocksource clk32k = {
101 	.name		= "32k_counter",
102 	.rating		= 150,
103 	.read		= read_clk32k,
104 	.mask		= CLOCKSOURCE_MASK(20),
105 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
106 };
107 
108 static void clkdev32k_disable_and_flush_irq(void)
109 {
110 	unsigned int val;
111 
112 	/* Disable and flush pending timer interrupts */
113 	regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS);
114 	regmap_read(regmap_st, AT91_ST_SR, &val);
115 	last_crtr = read_CRTR();
116 }
117 
118 static int clkevt32k_shutdown(struct clock_event_device *evt)
119 {
120 	clkdev32k_disable_and_flush_irq();
121 	irqmask = 0;
122 	regmap_write(regmap_st, AT91_ST_IER, irqmask);
123 	return 0;
124 }
125 
126 static int clkevt32k_set_oneshot(struct clock_event_device *dev)
127 {
128 	clkdev32k_disable_and_flush_irq();
129 
130 	/*
131 	 * ALM for oneshot irqs, set by next_event()
132 	 * before 32 seconds have passed.
133 	 */
134 	irqmask = AT91_ST_ALMS;
135 	regmap_write(regmap_st, AT91_ST_RTAR, last_crtr);
136 	regmap_write(regmap_st, AT91_ST_IER, irqmask);
137 	return 0;
138 }
139 
140 static int clkevt32k_set_periodic(struct clock_event_device *dev)
141 {
142 	clkdev32k_disable_and_flush_irq();
143 
144 	/* PIT for periodic irqs; fixed rate of 1/HZ */
145 	irqmask = AT91_ST_PITS;
146 	regmap_write(regmap_st, AT91_ST_PIMR, timer_latch);
147 	regmap_write(regmap_st, AT91_ST_IER, irqmask);
148 	return 0;
149 }
150 
151 static int
152 clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev)
153 {
154 	u32		alm;
155 	int		status = 0;
156 	unsigned int	val;
157 
158 	BUG_ON(delta < 2);
159 
160 	/* The alarm IRQ uses absolute time (now+delta), not the relative
161 	 * time (delta) in our calling convention.  Like all clockevents
162 	 * using such "match" hardware, we have a race to defend against.
163 	 *
164 	 * Our defense here is to have set up the clockevent device so the
165 	 * delta is at least two.  That way we never end up writing RTAR
166 	 * with the value then held in CRTR ... which would mean the match
167 	 * wouldn't trigger until 32 seconds later, after CRTR wraps.
168 	 */
169 	alm = read_CRTR();
170 
171 	/* Cancel any pending alarm; flush any pending IRQ */
172 	regmap_write(regmap_st, AT91_ST_RTAR, alm);
173 	regmap_read(regmap_st, AT91_ST_SR, &val);
174 
175 	/* Schedule alarm by writing RTAR. */
176 	alm += delta;
177 	regmap_write(regmap_st, AT91_ST_RTAR, alm);
178 
179 	return status;
180 }
181 
182 static struct clock_event_device clkevt = {
183 	.name			= "at91_tick",
184 	.features		= CLOCK_EVT_FEAT_PERIODIC |
185 				  CLOCK_EVT_FEAT_ONESHOT,
186 	.rating			= 150,
187 	.set_next_event		= clkevt32k_next_event,
188 	.set_state_shutdown	= clkevt32k_shutdown,
189 	.set_state_periodic	= clkevt32k_set_periodic,
190 	.set_state_oneshot	= clkevt32k_set_oneshot,
191 	.tick_resume		= clkevt32k_shutdown,
192 };
193 
194 /*
195  * ST (system timer) module supports both clockevents and clocksource.
196  */
197 static int __init atmel_st_timer_init(struct device_node *node)
198 {
199 	struct clk *sclk;
200 	unsigned int sclk_rate, val;
201 	int irq, ret;
202 
203 	regmap_st = syscon_node_to_regmap(node);
204 	if (IS_ERR(regmap_st)) {
205 		pr_err("Unable to get regmap\n");
206 		return PTR_ERR(regmap_st);
207 	}
208 
209 	/* Disable all timer interrupts, and clear any pending ones */
210 	regmap_write(regmap_st, AT91_ST_IDR,
211 		AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
212 	regmap_read(regmap_st, AT91_ST_SR, &val);
213 
214 	/* Get the interrupts property */
215 	irq  = irq_of_parse_and_map(node, 0);
216 	if (!irq) {
217 		pr_err("Unable to get IRQ from DT\n");
218 		return -EINVAL;
219 	}
220 
221 	/* Make IRQs happen for the system timer */
222 	ret = request_irq(irq, at91rm9200_timer_interrupt,
223 			  IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL,
224 			  "at91_tick", regmap_st);
225 	if (ret) {
226 		pr_err("Unable to setup IRQ\n");
227 		return ret;
228 	}
229 
230 	sclk = of_clk_get(node, 0);
231 	if (IS_ERR(sclk)) {
232 		pr_err("Unable to get slow clock\n");
233 		return PTR_ERR(sclk);
234 	}
235 
236 	ret = clk_prepare_enable(sclk);
237 	if (ret) {
238 		pr_err("Could not enable slow clock\n");
239 		return ret;
240 	}
241 
242 	sclk_rate = clk_get_rate(sclk);
243 	if (!sclk_rate) {
244 		pr_err("Invalid slow clock rate\n");
245 		return -EINVAL;
246 	}
247 	timer_latch = (sclk_rate + HZ / 2) / HZ;
248 
249 	/* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
250 	 * directly for the clocksource and all clockevents, after adjusting
251 	 * its prescaler from the 1 Hz default.
252 	 */
253 	regmap_write(regmap_st, AT91_ST_RTMR, 1);
254 
255 	/* Setup timer clockevent, with minimum of two ticks (important!!) */
256 	clkevt.cpumask = cpumask_of(0);
257 	clockevents_config_and_register(&clkevt, sclk_rate,
258 					2, AT91_ST_ALMV);
259 
260 	/* register clocksource */
261 	return clocksource_register_hz(&clk32k, sclk_rate);
262 }
263 TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st",
264 		       atmel_st_timer_init);
265