xref: /openbmc/linux/drivers/clocksource/sh_tmu.c (revision e847c767)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - TMU
4  *
5  *  Copyright (C) 2009 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_timer.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #ifdef CONFIG_SUPERH
28 #include <asm/platform_early.h>
29 #endif
30 
31 enum sh_tmu_model {
32 	SH_TMU,
33 	SH_TMU_SH3,
34 };
35 
36 struct sh_tmu_device;
37 
38 struct sh_tmu_channel {
39 	struct sh_tmu_device *tmu;
40 	unsigned int index;
41 
42 	void __iomem *base;
43 	int irq;
44 
45 	unsigned long periodic;
46 	struct clock_event_device ced;
47 	struct clocksource cs;
48 	bool cs_enabled;
49 	unsigned int enable_count;
50 };
51 
52 struct sh_tmu_device {
53 	struct platform_device *pdev;
54 
55 	void __iomem *mapbase;
56 	struct clk *clk;
57 	unsigned long rate;
58 
59 	enum sh_tmu_model model;
60 
61 	raw_spinlock_t lock; /* Protect the shared start/stop register */
62 
63 	struct sh_tmu_channel *channels;
64 	unsigned int num_channels;
65 
66 	bool has_clockevent;
67 	bool has_clocksource;
68 };
69 
70 #define TSTR -1 /* shared register */
71 #define TCOR  0 /* channel register */
72 #define TCNT 1 /* channel register */
73 #define TCR 2 /* channel register */
74 
75 #define TCR_UNF			(1 << 8)
76 #define TCR_UNIE		(1 << 5)
77 #define TCR_TPSC_CLK4		(0 << 0)
78 #define TCR_TPSC_CLK16		(1 << 0)
79 #define TCR_TPSC_CLK64		(2 << 0)
80 #define TCR_TPSC_CLK256		(3 << 0)
81 #define TCR_TPSC_CLK1024	(4 << 0)
82 #define TCR_TPSC_MASK		(7 << 0)
83 
84 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
85 {
86 	unsigned long offs;
87 
88 	if (reg_nr == TSTR) {
89 		switch (ch->tmu->model) {
90 		case SH_TMU_SH3:
91 			return ioread8(ch->tmu->mapbase + 2);
92 		case SH_TMU:
93 			return ioread8(ch->tmu->mapbase + 4);
94 		}
95 	}
96 
97 	offs = reg_nr << 2;
98 
99 	if (reg_nr == TCR)
100 		return ioread16(ch->base + offs);
101 	else
102 		return ioread32(ch->base + offs);
103 }
104 
105 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
106 				unsigned long value)
107 {
108 	unsigned long offs;
109 
110 	if (reg_nr == TSTR) {
111 		switch (ch->tmu->model) {
112 		case SH_TMU_SH3:
113 			return iowrite8(value, ch->tmu->mapbase + 2);
114 		case SH_TMU:
115 			return iowrite8(value, ch->tmu->mapbase + 4);
116 		}
117 	}
118 
119 	offs = reg_nr << 2;
120 
121 	if (reg_nr == TCR)
122 		iowrite16(value, ch->base + offs);
123 	else
124 		iowrite32(value, ch->base + offs);
125 }
126 
127 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
128 {
129 	unsigned long flags, value;
130 
131 	/* start stop register shared by multiple timer channels */
132 	raw_spin_lock_irqsave(&ch->tmu->lock, flags);
133 	value = sh_tmu_read(ch, TSTR);
134 
135 	if (start)
136 		value |= 1 << ch->index;
137 	else
138 		value &= ~(1 << ch->index);
139 
140 	sh_tmu_write(ch, TSTR, value);
141 	raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
142 }
143 
144 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
145 {
146 	int ret;
147 
148 	/* enable clock */
149 	ret = clk_enable(ch->tmu->clk);
150 	if (ret) {
151 		dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
152 			ch->index);
153 		return ret;
154 	}
155 
156 	/* make sure channel is disabled */
157 	sh_tmu_start_stop_ch(ch, 0);
158 
159 	/* maximum timeout */
160 	sh_tmu_write(ch, TCOR, 0xffffffff);
161 	sh_tmu_write(ch, TCNT, 0xffffffff);
162 
163 	/* configure channel to parent clock / 4, irq off */
164 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
165 
166 	/* enable channel */
167 	sh_tmu_start_stop_ch(ch, 1);
168 
169 	return 0;
170 }
171 
172 static int sh_tmu_enable(struct sh_tmu_channel *ch)
173 {
174 	if (ch->enable_count++ > 0)
175 		return 0;
176 
177 	pm_runtime_get_sync(&ch->tmu->pdev->dev);
178 	dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
179 
180 	return __sh_tmu_enable(ch);
181 }
182 
183 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
184 {
185 	/* disable channel */
186 	sh_tmu_start_stop_ch(ch, 0);
187 
188 	/* disable interrupts in TMU block */
189 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
190 
191 	/* stop clock */
192 	clk_disable(ch->tmu->clk);
193 }
194 
195 static void sh_tmu_disable(struct sh_tmu_channel *ch)
196 {
197 	if (WARN_ON(ch->enable_count == 0))
198 		return;
199 
200 	if (--ch->enable_count > 0)
201 		return;
202 
203 	__sh_tmu_disable(ch);
204 
205 	dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
206 	pm_runtime_put(&ch->tmu->pdev->dev);
207 }
208 
209 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
210 			    int periodic)
211 {
212 	/* stop timer */
213 	sh_tmu_start_stop_ch(ch, 0);
214 
215 	/* acknowledge interrupt */
216 	sh_tmu_read(ch, TCR);
217 
218 	/* enable interrupt */
219 	sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
220 
221 	/* reload delta value in case of periodic timer */
222 	if (periodic)
223 		sh_tmu_write(ch, TCOR, delta);
224 	else
225 		sh_tmu_write(ch, TCOR, 0xffffffff);
226 
227 	sh_tmu_write(ch, TCNT, delta);
228 
229 	/* start timer */
230 	sh_tmu_start_stop_ch(ch, 1);
231 }
232 
233 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
234 {
235 	struct sh_tmu_channel *ch = dev_id;
236 
237 	/* disable or acknowledge interrupt */
238 	if (clockevent_state_oneshot(&ch->ced))
239 		sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
240 	else
241 		sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
242 
243 	/* notify clockevent layer */
244 	ch->ced.event_handler(&ch->ced);
245 	return IRQ_HANDLED;
246 }
247 
248 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
249 {
250 	return container_of(cs, struct sh_tmu_channel, cs);
251 }
252 
253 static u64 sh_tmu_clocksource_read(struct clocksource *cs)
254 {
255 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
256 
257 	return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
258 }
259 
260 static int sh_tmu_clocksource_enable(struct clocksource *cs)
261 {
262 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
263 	int ret;
264 
265 	if (WARN_ON(ch->cs_enabled))
266 		return 0;
267 
268 	ret = sh_tmu_enable(ch);
269 	if (!ret)
270 		ch->cs_enabled = true;
271 
272 	return ret;
273 }
274 
275 static void sh_tmu_clocksource_disable(struct clocksource *cs)
276 {
277 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
278 
279 	if (WARN_ON(!ch->cs_enabled))
280 		return;
281 
282 	sh_tmu_disable(ch);
283 	ch->cs_enabled = false;
284 }
285 
286 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
287 {
288 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
289 
290 	if (!ch->cs_enabled)
291 		return;
292 
293 	if (--ch->enable_count == 0) {
294 		__sh_tmu_disable(ch);
295 		dev_pm_genpd_suspend(&ch->tmu->pdev->dev);
296 	}
297 }
298 
299 static void sh_tmu_clocksource_resume(struct clocksource *cs)
300 {
301 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
302 
303 	if (!ch->cs_enabled)
304 		return;
305 
306 	if (ch->enable_count++ == 0) {
307 		dev_pm_genpd_resume(&ch->tmu->pdev->dev);
308 		__sh_tmu_enable(ch);
309 	}
310 }
311 
312 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
313 				       const char *name)
314 {
315 	struct clocksource *cs = &ch->cs;
316 
317 	cs->name = name;
318 	cs->rating = 200;
319 	cs->read = sh_tmu_clocksource_read;
320 	cs->enable = sh_tmu_clocksource_enable;
321 	cs->disable = sh_tmu_clocksource_disable;
322 	cs->suspend = sh_tmu_clocksource_suspend;
323 	cs->resume = sh_tmu_clocksource_resume;
324 	cs->mask = CLOCKSOURCE_MASK(32);
325 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
326 
327 	dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
328 		 ch->index);
329 
330 	clocksource_register_hz(cs, ch->tmu->rate);
331 	return 0;
332 }
333 
334 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
335 {
336 	return container_of(ced, struct sh_tmu_channel, ced);
337 }
338 
339 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
340 {
341 	sh_tmu_enable(ch);
342 
343 	if (periodic) {
344 		ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
345 		sh_tmu_set_next(ch, ch->periodic, 1);
346 	}
347 }
348 
349 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
350 {
351 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
352 
353 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
354 		sh_tmu_disable(ch);
355 	return 0;
356 }
357 
358 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
359 					int periodic)
360 {
361 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
362 
363 	/* deal with old setting first */
364 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
365 		sh_tmu_disable(ch);
366 
367 	dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
368 		 ch->index, periodic ? "periodic" : "oneshot");
369 	sh_tmu_clock_event_start(ch, periodic);
370 	return 0;
371 }
372 
373 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
374 {
375 	return sh_tmu_clock_event_set_state(ced, 0);
376 }
377 
378 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
379 {
380 	return sh_tmu_clock_event_set_state(ced, 1);
381 }
382 
383 static int sh_tmu_clock_event_next(unsigned long delta,
384 				   struct clock_event_device *ced)
385 {
386 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
387 
388 	BUG_ON(!clockevent_state_oneshot(ced));
389 
390 	/* program new delta value */
391 	sh_tmu_set_next(ch, delta, 0);
392 	return 0;
393 }
394 
395 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
396 {
397 	dev_pm_genpd_suspend(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
398 }
399 
400 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
401 {
402 	dev_pm_genpd_resume(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
403 }
404 
405 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
406 				       const char *name)
407 {
408 	struct clock_event_device *ced = &ch->ced;
409 	int ret;
410 
411 	ced->name = name;
412 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
413 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
414 	ced->rating = 200;
415 	ced->cpumask = cpu_possible_mask;
416 	ced->set_next_event = sh_tmu_clock_event_next;
417 	ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
418 	ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
419 	ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
420 	ced->suspend = sh_tmu_clock_event_suspend;
421 	ced->resume = sh_tmu_clock_event_resume;
422 
423 	dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
424 		 ch->index);
425 
426 	clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
427 
428 	ret = request_irq(ch->irq, sh_tmu_interrupt,
429 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
430 			  dev_name(&ch->tmu->pdev->dev), ch);
431 	if (ret) {
432 		dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
433 			ch->index, ch->irq);
434 		return;
435 	}
436 }
437 
438 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
439 			   bool clockevent, bool clocksource)
440 {
441 	if (clockevent) {
442 		ch->tmu->has_clockevent = true;
443 		sh_tmu_register_clockevent(ch, name);
444 	} else if (clocksource) {
445 		ch->tmu->has_clocksource = true;
446 		sh_tmu_register_clocksource(ch, name);
447 	}
448 
449 	return 0;
450 }
451 
452 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
453 				bool clockevent, bool clocksource,
454 				struct sh_tmu_device *tmu)
455 {
456 	/* Skip unused channels. */
457 	if (!clockevent && !clocksource)
458 		return 0;
459 
460 	ch->tmu = tmu;
461 	ch->index = index;
462 
463 	if (tmu->model == SH_TMU_SH3)
464 		ch->base = tmu->mapbase + 4 + ch->index * 12;
465 	else
466 		ch->base = tmu->mapbase + 8 + ch->index * 12;
467 
468 	ch->irq = platform_get_irq(tmu->pdev, index);
469 	if (ch->irq < 0)
470 		return ch->irq;
471 
472 	ch->cs_enabled = false;
473 	ch->enable_count = 0;
474 
475 	return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
476 			       clockevent, clocksource);
477 }
478 
479 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
480 {
481 	struct resource *res;
482 
483 	res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
484 	if (!res) {
485 		dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
486 		return -ENXIO;
487 	}
488 
489 	tmu->mapbase = ioremap(res->start, resource_size(res));
490 	if (tmu->mapbase == NULL)
491 		return -ENXIO;
492 
493 	return 0;
494 }
495 
496 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
497 {
498 	struct device_node *np = tmu->pdev->dev.of_node;
499 
500 	tmu->model = SH_TMU;
501 	tmu->num_channels = 3;
502 
503 	of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
504 
505 	if (tmu->num_channels != 2 && tmu->num_channels != 3) {
506 		dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
507 			tmu->num_channels);
508 		return -EINVAL;
509 	}
510 
511 	return 0;
512 }
513 
514 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
515 {
516 	unsigned int i;
517 	int ret;
518 
519 	tmu->pdev = pdev;
520 
521 	raw_spin_lock_init(&tmu->lock);
522 
523 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
524 		ret = sh_tmu_parse_dt(tmu);
525 		if (ret < 0)
526 			return ret;
527 	} else if (pdev->dev.platform_data) {
528 		const struct platform_device_id *id = pdev->id_entry;
529 		struct sh_timer_config *cfg = pdev->dev.platform_data;
530 
531 		tmu->model = id->driver_data;
532 		tmu->num_channels = hweight8(cfg->channels_mask);
533 	} else {
534 		dev_err(&tmu->pdev->dev, "missing platform data\n");
535 		return -ENXIO;
536 	}
537 
538 	/* Get hold of clock. */
539 	tmu->clk = clk_get(&tmu->pdev->dev, "fck");
540 	if (IS_ERR(tmu->clk)) {
541 		dev_err(&tmu->pdev->dev, "cannot get clock\n");
542 		return PTR_ERR(tmu->clk);
543 	}
544 
545 	ret = clk_prepare(tmu->clk);
546 	if (ret < 0)
547 		goto err_clk_put;
548 
549 	/* Determine clock rate. */
550 	ret = clk_enable(tmu->clk);
551 	if (ret < 0)
552 		goto err_clk_unprepare;
553 
554 	tmu->rate = clk_get_rate(tmu->clk) / 4;
555 	clk_disable(tmu->clk);
556 
557 	/* Map the memory resource. */
558 	ret = sh_tmu_map_memory(tmu);
559 	if (ret < 0) {
560 		dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
561 		goto err_clk_unprepare;
562 	}
563 
564 	/* Allocate and setup the channels. */
565 	tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
566 				GFP_KERNEL);
567 	if (tmu->channels == NULL) {
568 		ret = -ENOMEM;
569 		goto err_unmap;
570 	}
571 
572 	/*
573 	 * Use the first channel as a clock event device and the second channel
574 	 * as a clock source.
575 	 */
576 	for (i = 0; i < tmu->num_channels; ++i) {
577 		ret = sh_tmu_channel_setup(&tmu->channels[i], i,
578 					   i == 0, i == 1, tmu);
579 		if (ret < 0)
580 			goto err_unmap;
581 	}
582 
583 	platform_set_drvdata(pdev, tmu);
584 
585 	return 0;
586 
587 err_unmap:
588 	kfree(tmu->channels);
589 	iounmap(tmu->mapbase);
590 err_clk_unprepare:
591 	clk_unprepare(tmu->clk);
592 err_clk_put:
593 	clk_put(tmu->clk);
594 	return ret;
595 }
596 
597 static int sh_tmu_probe(struct platform_device *pdev)
598 {
599 	struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
600 	int ret;
601 
602 	if (!is_sh_early_platform_device(pdev)) {
603 		pm_runtime_set_active(&pdev->dev);
604 		pm_runtime_enable(&pdev->dev);
605 	}
606 
607 	if (tmu) {
608 		dev_info(&pdev->dev, "kept as earlytimer\n");
609 		goto out;
610 	}
611 
612 	tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
613 	if (tmu == NULL)
614 		return -ENOMEM;
615 
616 	ret = sh_tmu_setup(tmu, pdev);
617 	if (ret) {
618 		kfree(tmu);
619 		pm_runtime_idle(&pdev->dev);
620 		return ret;
621 	}
622 
623 	if (is_sh_early_platform_device(pdev))
624 		return 0;
625 
626  out:
627 	if (tmu->has_clockevent || tmu->has_clocksource)
628 		pm_runtime_irq_safe(&pdev->dev);
629 	else
630 		pm_runtime_idle(&pdev->dev);
631 
632 	return 0;
633 }
634 
635 static const struct platform_device_id sh_tmu_id_table[] = {
636 	{ "sh-tmu", SH_TMU },
637 	{ "sh-tmu-sh3", SH_TMU_SH3 },
638 	{ }
639 };
640 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
641 
642 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
643 	{ .compatible = "renesas,tmu" },
644 	{ }
645 };
646 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
647 
648 static struct platform_driver sh_tmu_device_driver = {
649 	.probe		= sh_tmu_probe,
650 	.driver		= {
651 		.name	= "sh_tmu",
652 		.of_match_table = of_match_ptr(sh_tmu_of_table),
653 		.suppress_bind_attrs = true,
654 	},
655 	.id_table	= sh_tmu_id_table,
656 };
657 
658 static int __init sh_tmu_init(void)
659 {
660 	return platform_driver_register(&sh_tmu_device_driver);
661 }
662 
663 static void __exit sh_tmu_exit(void)
664 {
665 	platform_driver_unregister(&sh_tmu_device_driver);
666 }
667 
668 #ifdef CONFIG_SUPERH
669 sh_early_platform_init("earlytimer", &sh_tmu_device_driver);
670 #endif
671 
672 subsys_initcall(sh_tmu_init);
673 module_exit(sh_tmu_exit);
674 
675 MODULE_AUTHOR("Magnus Damm");
676 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
677 MODULE_LICENSE("GPL v2");
678