xref: /openbmc/linux/drivers/clocksource/sh_tmu.c (revision de2bdb3d)
1 /*
2  * SuperH Timer Support - TMU
3  *
4  *  Copyright (C) 2009 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 enum sh_tmu_model {
36 	SH_TMU,
37 	SH_TMU_SH3,
38 };
39 
40 struct sh_tmu_device;
41 
42 struct sh_tmu_channel {
43 	struct sh_tmu_device *tmu;
44 	unsigned int index;
45 
46 	void __iomem *base;
47 	int irq;
48 
49 	unsigned long rate;
50 	unsigned long periodic;
51 	struct clock_event_device ced;
52 	struct clocksource cs;
53 	bool cs_enabled;
54 	unsigned int enable_count;
55 };
56 
57 struct sh_tmu_device {
58 	struct platform_device *pdev;
59 
60 	void __iomem *mapbase;
61 	struct clk *clk;
62 
63 	enum sh_tmu_model model;
64 
65 	raw_spinlock_t lock; /* Protect the shared start/stop register */
66 
67 	struct sh_tmu_channel *channels;
68 	unsigned int num_channels;
69 
70 	bool has_clockevent;
71 	bool has_clocksource;
72 };
73 
74 #define TSTR -1 /* shared register */
75 #define TCOR  0 /* channel register */
76 #define TCNT 1 /* channel register */
77 #define TCR 2 /* channel register */
78 
79 #define TCR_UNF			(1 << 8)
80 #define TCR_UNIE		(1 << 5)
81 #define TCR_TPSC_CLK4		(0 << 0)
82 #define TCR_TPSC_CLK16		(1 << 0)
83 #define TCR_TPSC_CLK64		(2 << 0)
84 #define TCR_TPSC_CLK256		(3 << 0)
85 #define TCR_TPSC_CLK1024	(4 << 0)
86 #define TCR_TPSC_MASK		(7 << 0)
87 
88 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
89 {
90 	unsigned long offs;
91 
92 	if (reg_nr == TSTR) {
93 		switch (ch->tmu->model) {
94 		case SH_TMU_SH3:
95 			return ioread8(ch->tmu->mapbase + 2);
96 		case SH_TMU:
97 			return ioread8(ch->tmu->mapbase + 4);
98 		}
99 	}
100 
101 	offs = reg_nr << 2;
102 
103 	if (reg_nr == TCR)
104 		return ioread16(ch->base + offs);
105 	else
106 		return ioread32(ch->base + offs);
107 }
108 
109 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
110 				unsigned long value)
111 {
112 	unsigned long offs;
113 
114 	if (reg_nr == TSTR) {
115 		switch (ch->tmu->model) {
116 		case SH_TMU_SH3:
117 			return iowrite8(value, ch->tmu->mapbase + 2);
118 		case SH_TMU:
119 			return iowrite8(value, ch->tmu->mapbase + 4);
120 		}
121 	}
122 
123 	offs = reg_nr << 2;
124 
125 	if (reg_nr == TCR)
126 		iowrite16(value, ch->base + offs);
127 	else
128 		iowrite32(value, ch->base + offs);
129 }
130 
131 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
132 {
133 	unsigned long flags, value;
134 
135 	/* start stop register shared by multiple timer channels */
136 	raw_spin_lock_irqsave(&ch->tmu->lock, flags);
137 	value = sh_tmu_read(ch, TSTR);
138 
139 	if (start)
140 		value |= 1 << ch->index;
141 	else
142 		value &= ~(1 << ch->index);
143 
144 	sh_tmu_write(ch, TSTR, value);
145 	raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
146 }
147 
148 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
149 {
150 	int ret;
151 
152 	/* enable clock */
153 	ret = clk_enable(ch->tmu->clk);
154 	if (ret) {
155 		dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
156 			ch->index);
157 		return ret;
158 	}
159 
160 	/* make sure channel is disabled */
161 	sh_tmu_start_stop_ch(ch, 0);
162 
163 	/* maximum timeout */
164 	sh_tmu_write(ch, TCOR, 0xffffffff);
165 	sh_tmu_write(ch, TCNT, 0xffffffff);
166 
167 	/* configure channel to parent clock / 4, irq off */
168 	ch->rate = clk_get_rate(ch->tmu->clk) / 4;
169 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
170 
171 	/* enable channel */
172 	sh_tmu_start_stop_ch(ch, 1);
173 
174 	return 0;
175 }
176 
177 static int sh_tmu_enable(struct sh_tmu_channel *ch)
178 {
179 	if (ch->enable_count++ > 0)
180 		return 0;
181 
182 	pm_runtime_get_sync(&ch->tmu->pdev->dev);
183 	dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
184 
185 	return __sh_tmu_enable(ch);
186 }
187 
188 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
189 {
190 	/* disable channel */
191 	sh_tmu_start_stop_ch(ch, 0);
192 
193 	/* disable interrupts in TMU block */
194 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
195 
196 	/* stop clock */
197 	clk_disable(ch->tmu->clk);
198 }
199 
200 static void sh_tmu_disable(struct sh_tmu_channel *ch)
201 {
202 	if (WARN_ON(ch->enable_count == 0))
203 		return;
204 
205 	if (--ch->enable_count > 0)
206 		return;
207 
208 	__sh_tmu_disable(ch);
209 
210 	dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
211 	pm_runtime_put(&ch->tmu->pdev->dev);
212 }
213 
214 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
215 			    int periodic)
216 {
217 	/* stop timer */
218 	sh_tmu_start_stop_ch(ch, 0);
219 
220 	/* acknowledge interrupt */
221 	sh_tmu_read(ch, TCR);
222 
223 	/* enable interrupt */
224 	sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
225 
226 	/* reload delta value in case of periodic timer */
227 	if (periodic)
228 		sh_tmu_write(ch, TCOR, delta);
229 	else
230 		sh_tmu_write(ch, TCOR, 0xffffffff);
231 
232 	sh_tmu_write(ch, TCNT, delta);
233 
234 	/* start timer */
235 	sh_tmu_start_stop_ch(ch, 1);
236 }
237 
238 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
239 {
240 	struct sh_tmu_channel *ch = dev_id;
241 
242 	/* disable or acknowledge interrupt */
243 	if (clockevent_state_oneshot(&ch->ced))
244 		sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
245 	else
246 		sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
247 
248 	/* notify clockevent layer */
249 	ch->ced.event_handler(&ch->ced);
250 	return IRQ_HANDLED;
251 }
252 
253 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
254 {
255 	return container_of(cs, struct sh_tmu_channel, cs);
256 }
257 
258 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
259 {
260 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
261 
262 	return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
263 }
264 
265 static int sh_tmu_clocksource_enable(struct clocksource *cs)
266 {
267 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
268 	int ret;
269 
270 	if (WARN_ON(ch->cs_enabled))
271 		return 0;
272 
273 	ret = sh_tmu_enable(ch);
274 	if (!ret) {
275 		__clocksource_update_freq_hz(cs, ch->rate);
276 		ch->cs_enabled = true;
277 	}
278 
279 	return ret;
280 }
281 
282 static void sh_tmu_clocksource_disable(struct clocksource *cs)
283 {
284 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
285 
286 	if (WARN_ON(!ch->cs_enabled))
287 		return;
288 
289 	sh_tmu_disable(ch);
290 	ch->cs_enabled = false;
291 }
292 
293 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
294 {
295 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
296 
297 	if (!ch->cs_enabled)
298 		return;
299 
300 	if (--ch->enable_count == 0) {
301 		__sh_tmu_disable(ch);
302 		pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
303 	}
304 }
305 
306 static void sh_tmu_clocksource_resume(struct clocksource *cs)
307 {
308 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
309 
310 	if (!ch->cs_enabled)
311 		return;
312 
313 	if (ch->enable_count++ == 0) {
314 		pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
315 		__sh_tmu_enable(ch);
316 	}
317 }
318 
319 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
320 				       const char *name)
321 {
322 	struct clocksource *cs = &ch->cs;
323 
324 	cs->name = name;
325 	cs->rating = 200;
326 	cs->read = sh_tmu_clocksource_read;
327 	cs->enable = sh_tmu_clocksource_enable;
328 	cs->disable = sh_tmu_clocksource_disable;
329 	cs->suspend = sh_tmu_clocksource_suspend;
330 	cs->resume = sh_tmu_clocksource_resume;
331 	cs->mask = CLOCKSOURCE_MASK(32);
332 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
333 
334 	dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
335 		 ch->index);
336 
337 	/* Register with dummy 1 Hz value, gets updated in ->enable() */
338 	clocksource_register_hz(cs, 1);
339 	return 0;
340 }
341 
342 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
343 {
344 	return container_of(ced, struct sh_tmu_channel, ced);
345 }
346 
347 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
348 {
349 	struct clock_event_device *ced = &ch->ced;
350 
351 	sh_tmu_enable(ch);
352 
353 	clockevents_config(ced, ch->rate);
354 
355 	if (periodic) {
356 		ch->periodic = (ch->rate + HZ/2) / HZ;
357 		sh_tmu_set_next(ch, ch->periodic, 1);
358 	}
359 }
360 
361 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
362 {
363 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
364 
365 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
366 		sh_tmu_disable(ch);
367 	return 0;
368 }
369 
370 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
371 					int periodic)
372 {
373 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
374 
375 	/* deal with old setting first */
376 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
377 		sh_tmu_disable(ch);
378 
379 	dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
380 		 ch->index, periodic ? "periodic" : "oneshot");
381 	sh_tmu_clock_event_start(ch, periodic);
382 	return 0;
383 }
384 
385 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
386 {
387 	return sh_tmu_clock_event_set_state(ced, 0);
388 }
389 
390 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
391 {
392 	return sh_tmu_clock_event_set_state(ced, 1);
393 }
394 
395 static int sh_tmu_clock_event_next(unsigned long delta,
396 				   struct clock_event_device *ced)
397 {
398 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
399 
400 	BUG_ON(!clockevent_state_oneshot(ced));
401 
402 	/* program new delta value */
403 	sh_tmu_set_next(ch, delta, 0);
404 	return 0;
405 }
406 
407 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
408 {
409 	pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
410 }
411 
412 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
413 {
414 	pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
415 }
416 
417 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
418 				       const char *name)
419 {
420 	struct clock_event_device *ced = &ch->ced;
421 	int ret;
422 
423 	ced->name = name;
424 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
425 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
426 	ced->rating = 200;
427 	ced->cpumask = cpu_possible_mask;
428 	ced->set_next_event = sh_tmu_clock_event_next;
429 	ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
430 	ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
431 	ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
432 	ced->suspend = sh_tmu_clock_event_suspend;
433 	ced->resume = sh_tmu_clock_event_resume;
434 
435 	dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
436 		 ch->index);
437 
438 	clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
439 
440 	ret = request_irq(ch->irq, sh_tmu_interrupt,
441 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
442 			  dev_name(&ch->tmu->pdev->dev), ch);
443 	if (ret) {
444 		dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
445 			ch->index, ch->irq);
446 		return;
447 	}
448 }
449 
450 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
451 			   bool clockevent, bool clocksource)
452 {
453 	if (clockevent) {
454 		ch->tmu->has_clockevent = true;
455 		sh_tmu_register_clockevent(ch, name);
456 	} else if (clocksource) {
457 		ch->tmu->has_clocksource = true;
458 		sh_tmu_register_clocksource(ch, name);
459 	}
460 
461 	return 0;
462 }
463 
464 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
465 				bool clockevent, bool clocksource,
466 				struct sh_tmu_device *tmu)
467 {
468 	/* Skip unused channels. */
469 	if (!clockevent && !clocksource)
470 		return 0;
471 
472 	ch->tmu = tmu;
473 	ch->index = index;
474 
475 	if (tmu->model == SH_TMU_SH3)
476 		ch->base = tmu->mapbase + 4 + ch->index * 12;
477 	else
478 		ch->base = tmu->mapbase + 8 + ch->index * 12;
479 
480 	ch->irq = platform_get_irq(tmu->pdev, index);
481 	if (ch->irq < 0) {
482 		dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
483 			ch->index);
484 		return ch->irq;
485 	}
486 
487 	ch->cs_enabled = false;
488 	ch->enable_count = 0;
489 
490 	return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
491 			       clockevent, clocksource);
492 }
493 
494 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
495 {
496 	struct resource *res;
497 
498 	res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
499 	if (!res) {
500 		dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
501 		return -ENXIO;
502 	}
503 
504 	tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
505 	if (tmu->mapbase == NULL)
506 		return -ENXIO;
507 
508 	return 0;
509 }
510 
511 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
512 {
513 	struct device_node *np = tmu->pdev->dev.of_node;
514 
515 	tmu->model = SH_TMU;
516 	tmu->num_channels = 3;
517 
518 	of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
519 
520 	if (tmu->num_channels != 2 && tmu->num_channels != 3) {
521 		dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
522 			tmu->num_channels);
523 		return -EINVAL;
524 	}
525 
526 	return 0;
527 }
528 
529 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
530 {
531 	unsigned int i;
532 	int ret;
533 
534 	tmu->pdev = pdev;
535 
536 	raw_spin_lock_init(&tmu->lock);
537 
538 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
539 		ret = sh_tmu_parse_dt(tmu);
540 		if (ret < 0)
541 			return ret;
542 	} else if (pdev->dev.platform_data) {
543 		const struct platform_device_id *id = pdev->id_entry;
544 		struct sh_timer_config *cfg = pdev->dev.platform_data;
545 
546 		tmu->model = id->driver_data;
547 		tmu->num_channels = hweight8(cfg->channels_mask);
548 	} else {
549 		dev_err(&tmu->pdev->dev, "missing platform data\n");
550 		return -ENXIO;
551 	}
552 
553 	/* Get hold of clock. */
554 	tmu->clk = clk_get(&tmu->pdev->dev, "fck");
555 	if (IS_ERR(tmu->clk)) {
556 		dev_err(&tmu->pdev->dev, "cannot get clock\n");
557 		return PTR_ERR(tmu->clk);
558 	}
559 
560 	ret = clk_prepare(tmu->clk);
561 	if (ret < 0)
562 		goto err_clk_put;
563 
564 	/* Map the memory resource. */
565 	ret = sh_tmu_map_memory(tmu);
566 	if (ret < 0) {
567 		dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
568 		goto err_clk_unprepare;
569 	}
570 
571 	/* Allocate and setup the channels. */
572 	tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
573 				GFP_KERNEL);
574 	if (tmu->channels == NULL) {
575 		ret = -ENOMEM;
576 		goto err_unmap;
577 	}
578 
579 	/*
580 	 * Use the first channel as a clock event device and the second channel
581 	 * as a clock source.
582 	 */
583 	for (i = 0; i < tmu->num_channels; ++i) {
584 		ret = sh_tmu_channel_setup(&tmu->channels[i], i,
585 					   i == 0, i == 1, tmu);
586 		if (ret < 0)
587 			goto err_unmap;
588 	}
589 
590 	platform_set_drvdata(pdev, tmu);
591 
592 	return 0;
593 
594 err_unmap:
595 	kfree(tmu->channels);
596 	iounmap(tmu->mapbase);
597 err_clk_unprepare:
598 	clk_unprepare(tmu->clk);
599 err_clk_put:
600 	clk_put(tmu->clk);
601 	return ret;
602 }
603 
604 static int sh_tmu_probe(struct platform_device *pdev)
605 {
606 	struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
607 	int ret;
608 
609 	if (!is_early_platform_device(pdev)) {
610 		pm_runtime_set_active(&pdev->dev);
611 		pm_runtime_enable(&pdev->dev);
612 	}
613 
614 	if (tmu) {
615 		dev_info(&pdev->dev, "kept as earlytimer\n");
616 		goto out;
617 	}
618 
619 	tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
620 	if (tmu == NULL)
621 		return -ENOMEM;
622 
623 	ret = sh_tmu_setup(tmu, pdev);
624 	if (ret) {
625 		kfree(tmu);
626 		pm_runtime_idle(&pdev->dev);
627 		return ret;
628 	}
629 	if (is_early_platform_device(pdev))
630 		return 0;
631 
632  out:
633 	if (tmu->has_clockevent || tmu->has_clocksource)
634 		pm_runtime_irq_safe(&pdev->dev);
635 	else
636 		pm_runtime_idle(&pdev->dev);
637 
638 	return 0;
639 }
640 
641 static int sh_tmu_remove(struct platform_device *pdev)
642 {
643 	return -EBUSY; /* cannot unregister clockevent and clocksource */
644 }
645 
646 static const struct platform_device_id sh_tmu_id_table[] = {
647 	{ "sh-tmu", SH_TMU },
648 	{ "sh-tmu-sh3", SH_TMU_SH3 },
649 	{ }
650 };
651 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
652 
653 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
654 	{ .compatible = "renesas,tmu" },
655 	{ }
656 };
657 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
658 
659 static struct platform_driver sh_tmu_device_driver = {
660 	.probe		= sh_tmu_probe,
661 	.remove		= sh_tmu_remove,
662 	.driver		= {
663 		.name	= "sh_tmu",
664 		.of_match_table = of_match_ptr(sh_tmu_of_table),
665 	},
666 	.id_table	= sh_tmu_id_table,
667 };
668 
669 static int __init sh_tmu_init(void)
670 {
671 	return platform_driver_register(&sh_tmu_device_driver);
672 }
673 
674 static void __exit sh_tmu_exit(void)
675 {
676 	platform_driver_unregister(&sh_tmu_device_driver);
677 }
678 
679 early_platform_init("earlytimer", &sh_tmu_device_driver);
680 subsys_initcall(sh_tmu_init);
681 module_exit(sh_tmu_exit);
682 
683 MODULE_AUTHOR("Magnus Damm");
684 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
685 MODULE_LICENSE("GPL v2");
686