xref: /openbmc/linux/drivers/clocksource/sh_tmu.c (revision d2999e1b)
1 /*
2  * SuperH Timer Support - TMU
3  *
4  *  Copyright (C) 2009 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_timer.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 
34 enum sh_tmu_model {
35 	SH_TMU_LEGACY,
36 	SH_TMU,
37 	SH_TMU_SH3,
38 };
39 
40 struct sh_tmu_device;
41 
42 struct sh_tmu_channel {
43 	struct sh_tmu_device *tmu;
44 	unsigned int index;
45 
46 	void __iomem *base;
47 	int irq;
48 
49 	unsigned long rate;
50 	unsigned long periodic;
51 	struct clock_event_device ced;
52 	struct clocksource cs;
53 	bool cs_enabled;
54 	unsigned int enable_count;
55 };
56 
57 struct sh_tmu_device {
58 	struct platform_device *pdev;
59 
60 	void __iomem *mapbase;
61 	struct clk *clk;
62 
63 	enum sh_tmu_model model;
64 
65 	struct sh_tmu_channel *channels;
66 	unsigned int num_channels;
67 
68 	bool has_clockevent;
69 	bool has_clocksource;
70 };
71 
72 static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
73 
74 #define TSTR -1 /* shared register */
75 #define TCOR  0 /* channel register */
76 #define TCNT 1 /* channel register */
77 #define TCR 2 /* channel register */
78 
79 #define TCR_UNF			(1 << 8)
80 #define TCR_UNIE		(1 << 5)
81 #define TCR_TPSC_CLK4		(0 << 0)
82 #define TCR_TPSC_CLK16		(1 << 0)
83 #define TCR_TPSC_CLK64		(2 << 0)
84 #define TCR_TPSC_CLK256		(3 << 0)
85 #define TCR_TPSC_CLK1024	(4 << 0)
86 #define TCR_TPSC_MASK		(7 << 0)
87 
88 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
89 {
90 	unsigned long offs;
91 
92 	if (reg_nr == TSTR) {
93 		switch (ch->tmu->model) {
94 		case SH_TMU_LEGACY:
95 			return ioread8(ch->tmu->mapbase);
96 		case SH_TMU_SH3:
97 			return ioread8(ch->tmu->mapbase + 2);
98 		case SH_TMU:
99 			return ioread8(ch->tmu->mapbase + 4);
100 		}
101 	}
102 
103 	offs = reg_nr << 2;
104 
105 	if (reg_nr == TCR)
106 		return ioread16(ch->base + offs);
107 	else
108 		return ioread32(ch->base + offs);
109 }
110 
111 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
112 				unsigned long value)
113 {
114 	unsigned long offs;
115 
116 	if (reg_nr == TSTR) {
117 		switch (ch->tmu->model) {
118 		case SH_TMU_LEGACY:
119 			return iowrite8(value, ch->tmu->mapbase);
120 		case SH_TMU_SH3:
121 			return iowrite8(value, ch->tmu->mapbase + 2);
122 		case SH_TMU:
123 			return iowrite8(value, ch->tmu->mapbase + 4);
124 		}
125 	}
126 
127 	offs = reg_nr << 2;
128 
129 	if (reg_nr == TCR)
130 		iowrite16(value, ch->base + offs);
131 	else
132 		iowrite32(value, ch->base + offs);
133 }
134 
135 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
136 {
137 	unsigned long flags, value;
138 
139 	/* start stop register shared by multiple timer channels */
140 	raw_spin_lock_irqsave(&sh_tmu_lock, flags);
141 	value = sh_tmu_read(ch, TSTR);
142 
143 	if (start)
144 		value |= 1 << ch->index;
145 	else
146 		value &= ~(1 << ch->index);
147 
148 	sh_tmu_write(ch, TSTR, value);
149 	raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
150 }
151 
152 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
153 {
154 	int ret;
155 
156 	/* enable clock */
157 	ret = clk_enable(ch->tmu->clk);
158 	if (ret) {
159 		dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
160 			ch->index);
161 		return ret;
162 	}
163 
164 	/* make sure channel is disabled */
165 	sh_tmu_start_stop_ch(ch, 0);
166 
167 	/* maximum timeout */
168 	sh_tmu_write(ch, TCOR, 0xffffffff);
169 	sh_tmu_write(ch, TCNT, 0xffffffff);
170 
171 	/* configure channel to parent clock / 4, irq off */
172 	ch->rate = clk_get_rate(ch->tmu->clk) / 4;
173 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
174 
175 	/* enable channel */
176 	sh_tmu_start_stop_ch(ch, 1);
177 
178 	return 0;
179 }
180 
181 static int sh_tmu_enable(struct sh_tmu_channel *ch)
182 {
183 	if (ch->enable_count++ > 0)
184 		return 0;
185 
186 	pm_runtime_get_sync(&ch->tmu->pdev->dev);
187 	dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
188 
189 	return __sh_tmu_enable(ch);
190 }
191 
192 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
193 {
194 	/* disable channel */
195 	sh_tmu_start_stop_ch(ch, 0);
196 
197 	/* disable interrupts in TMU block */
198 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
199 
200 	/* stop clock */
201 	clk_disable(ch->tmu->clk);
202 }
203 
204 static void sh_tmu_disable(struct sh_tmu_channel *ch)
205 {
206 	if (WARN_ON(ch->enable_count == 0))
207 		return;
208 
209 	if (--ch->enable_count > 0)
210 		return;
211 
212 	__sh_tmu_disable(ch);
213 
214 	dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
215 	pm_runtime_put(&ch->tmu->pdev->dev);
216 }
217 
218 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
219 			    int periodic)
220 {
221 	/* stop timer */
222 	sh_tmu_start_stop_ch(ch, 0);
223 
224 	/* acknowledge interrupt */
225 	sh_tmu_read(ch, TCR);
226 
227 	/* enable interrupt */
228 	sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
229 
230 	/* reload delta value in case of periodic timer */
231 	if (periodic)
232 		sh_tmu_write(ch, TCOR, delta);
233 	else
234 		sh_tmu_write(ch, TCOR, 0xffffffff);
235 
236 	sh_tmu_write(ch, TCNT, delta);
237 
238 	/* start timer */
239 	sh_tmu_start_stop_ch(ch, 1);
240 }
241 
242 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
243 {
244 	struct sh_tmu_channel *ch = dev_id;
245 
246 	/* disable or acknowledge interrupt */
247 	if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
248 		sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
249 	else
250 		sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
251 
252 	/* notify clockevent layer */
253 	ch->ced.event_handler(&ch->ced);
254 	return IRQ_HANDLED;
255 }
256 
257 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
258 {
259 	return container_of(cs, struct sh_tmu_channel, cs);
260 }
261 
262 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
263 {
264 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
265 
266 	return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
267 }
268 
269 static int sh_tmu_clocksource_enable(struct clocksource *cs)
270 {
271 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
272 	int ret;
273 
274 	if (WARN_ON(ch->cs_enabled))
275 		return 0;
276 
277 	ret = sh_tmu_enable(ch);
278 	if (!ret) {
279 		__clocksource_updatefreq_hz(cs, ch->rate);
280 		ch->cs_enabled = true;
281 	}
282 
283 	return ret;
284 }
285 
286 static void sh_tmu_clocksource_disable(struct clocksource *cs)
287 {
288 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
289 
290 	if (WARN_ON(!ch->cs_enabled))
291 		return;
292 
293 	sh_tmu_disable(ch);
294 	ch->cs_enabled = false;
295 }
296 
297 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
298 {
299 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
300 
301 	if (!ch->cs_enabled)
302 		return;
303 
304 	if (--ch->enable_count == 0) {
305 		__sh_tmu_disable(ch);
306 		pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
307 	}
308 }
309 
310 static void sh_tmu_clocksource_resume(struct clocksource *cs)
311 {
312 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
313 
314 	if (!ch->cs_enabled)
315 		return;
316 
317 	if (ch->enable_count++ == 0) {
318 		pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
319 		__sh_tmu_enable(ch);
320 	}
321 }
322 
323 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
324 				       const char *name)
325 {
326 	struct clocksource *cs = &ch->cs;
327 
328 	cs->name = name;
329 	cs->rating = 200;
330 	cs->read = sh_tmu_clocksource_read;
331 	cs->enable = sh_tmu_clocksource_enable;
332 	cs->disable = sh_tmu_clocksource_disable;
333 	cs->suspend = sh_tmu_clocksource_suspend;
334 	cs->resume = sh_tmu_clocksource_resume;
335 	cs->mask = CLOCKSOURCE_MASK(32);
336 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
337 
338 	dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
339 		 ch->index);
340 
341 	/* Register with dummy 1 Hz value, gets updated in ->enable() */
342 	clocksource_register_hz(cs, 1);
343 	return 0;
344 }
345 
346 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
347 {
348 	return container_of(ced, struct sh_tmu_channel, ced);
349 }
350 
351 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
352 {
353 	struct clock_event_device *ced = &ch->ced;
354 
355 	sh_tmu_enable(ch);
356 
357 	clockevents_config(ced, ch->rate);
358 
359 	if (periodic) {
360 		ch->periodic = (ch->rate + HZ/2) / HZ;
361 		sh_tmu_set_next(ch, ch->periodic, 1);
362 	}
363 }
364 
365 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
366 				    struct clock_event_device *ced)
367 {
368 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
369 	int disabled = 0;
370 
371 	/* deal with old setting first */
372 	switch (ced->mode) {
373 	case CLOCK_EVT_MODE_PERIODIC:
374 	case CLOCK_EVT_MODE_ONESHOT:
375 		sh_tmu_disable(ch);
376 		disabled = 1;
377 		break;
378 	default:
379 		break;
380 	}
381 
382 	switch (mode) {
383 	case CLOCK_EVT_MODE_PERIODIC:
384 		dev_info(&ch->tmu->pdev->dev,
385 			 "ch%u: used for periodic clock events\n", ch->index);
386 		sh_tmu_clock_event_start(ch, 1);
387 		break;
388 	case CLOCK_EVT_MODE_ONESHOT:
389 		dev_info(&ch->tmu->pdev->dev,
390 			 "ch%u: used for oneshot clock events\n", ch->index);
391 		sh_tmu_clock_event_start(ch, 0);
392 		break;
393 	case CLOCK_EVT_MODE_UNUSED:
394 		if (!disabled)
395 			sh_tmu_disable(ch);
396 		break;
397 	case CLOCK_EVT_MODE_SHUTDOWN:
398 	default:
399 		break;
400 	}
401 }
402 
403 static int sh_tmu_clock_event_next(unsigned long delta,
404 				   struct clock_event_device *ced)
405 {
406 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
407 
408 	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
409 
410 	/* program new delta value */
411 	sh_tmu_set_next(ch, delta, 0);
412 	return 0;
413 }
414 
415 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
416 {
417 	pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
418 }
419 
420 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
421 {
422 	pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
423 }
424 
425 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
426 				       const char *name)
427 {
428 	struct clock_event_device *ced = &ch->ced;
429 	int ret;
430 
431 	ced->name = name;
432 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
433 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
434 	ced->rating = 200;
435 	ced->cpumask = cpumask_of(0);
436 	ced->set_next_event = sh_tmu_clock_event_next;
437 	ced->set_mode = sh_tmu_clock_event_mode;
438 	ced->suspend = sh_tmu_clock_event_suspend;
439 	ced->resume = sh_tmu_clock_event_resume;
440 
441 	dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
442 		 ch->index);
443 
444 	clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
445 
446 	ret = request_irq(ch->irq, sh_tmu_interrupt,
447 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
448 			  dev_name(&ch->tmu->pdev->dev), ch);
449 	if (ret) {
450 		dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
451 			ch->index, ch->irq);
452 		return;
453 	}
454 }
455 
456 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
457 			   bool clockevent, bool clocksource)
458 {
459 	if (clockevent) {
460 		ch->tmu->has_clockevent = true;
461 		sh_tmu_register_clockevent(ch, name);
462 	} else if (clocksource) {
463 		ch->tmu->has_clocksource = true;
464 		sh_tmu_register_clocksource(ch, name);
465 	}
466 
467 	return 0;
468 }
469 
470 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
471 				bool clockevent, bool clocksource,
472 				struct sh_tmu_device *tmu)
473 {
474 	/* Skip unused channels. */
475 	if (!clockevent && !clocksource)
476 		return 0;
477 
478 	ch->tmu = tmu;
479 
480 	if (tmu->model == SH_TMU_LEGACY) {
481 		struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
482 
483 		/*
484 		 * The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps
485 		 * channel registers blocks at base + 2 + 12 * index, while all
486 		 * other variants map them at base + 4 + 12 * index. We can
487 		 * compute the index by just dividing by 12, the 2 bytes or 4
488 		 * bytes offset being hidden by the integer division.
489 		 */
490 		ch->index = cfg->channel_offset / 12;
491 		ch->base = tmu->mapbase + cfg->channel_offset;
492 	} else {
493 		ch->index = index;
494 
495 		if (tmu->model == SH_TMU_SH3)
496 			ch->base = tmu->mapbase + 4 + ch->index * 12;
497 		else
498 			ch->base = tmu->mapbase + 8 + ch->index * 12;
499 	}
500 
501 	ch->irq = platform_get_irq(tmu->pdev, index);
502 	if (ch->irq < 0) {
503 		dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
504 			ch->index);
505 		return ch->irq;
506 	}
507 
508 	ch->cs_enabled = false;
509 	ch->enable_count = 0;
510 
511 	return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
512 			       clockevent, clocksource);
513 }
514 
515 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
516 {
517 	struct resource *res;
518 
519 	res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
520 	if (!res) {
521 		dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
522 		return -ENXIO;
523 	}
524 
525 	tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
526 	if (tmu->mapbase == NULL)
527 		return -ENXIO;
528 
529 	/*
530 	 * In legacy platform device configuration (with one device per channel)
531 	 * the resource points to the channel base address.
532 	 */
533 	if (tmu->model == SH_TMU_LEGACY) {
534 		struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
535 		tmu->mapbase -= cfg->channel_offset;
536 	}
537 
538 	return 0;
539 }
540 
541 static void sh_tmu_unmap_memory(struct sh_tmu_device *tmu)
542 {
543 	if (tmu->model == SH_TMU_LEGACY) {
544 		struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
545 		tmu->mapbase += cfg->channel_offset;
546 	}
547 
548 	iounmap(tmu->mapbase);
549 }
550 
551 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
552 {
553 	struct sh_timer_config *cfg = pdev->dev.platform_data;
554 	const struct platform_device_id *id = pdev->id_entry;
555 	unsigned int i;
556 	int ret;
557 
558 	if (!cfg) {
559 		dev_err(&tmu->pdev->dev, "missing platform data\n");
560 		return -ENXIO;
561 	}
562 
563 	tmu->pdev = pdev;
564 	tmu->model = id->driver_data;
565 
566 	/* Get hold of clock. */
567 	tmu->clk = clk_get(&tmu->pdev->dev,
568 			   tmu->model == SH_TMU_LEGACY ? "tmu_fck" : "fck");
569 	if (IS_ERR(tmu->clk)) {
570 		dev_err(&tmu->pdev->dev, "cannot get clock\n");
571 		return PTR_ERR(tmu->clk);
572 	}
573 
574 	ret = clk_prepare(tmu->clk);
575 	if (ret < 0)
576 		goto err_clk_put;
577 
578 	/* Map the memory resource. */
579 	ret = sh_tmu_map_memory(tmu);
580 	if (ret < 0) {
581 		dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
582 		goto err_clk_unprepare;
583 	}
584 
585 	/* Allocate and setup the channels. */
586 	if (tmu->model == SH_TMU_LEGACY)
587 		tmu->num_channels = 1;
588 	else
589 		tmu->num_channels = hweight8(cfg->channels_mask);
590 
591 	tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
592 				GFP_KERNEL);
593 	if (tmu->channels == NULL) {
594 		ret = -ENOMEM;
595 		goto err_unmap;
596 	}
597 
598 	if (tmu->model == SH_TMU_LEGACY) {
599 		ret = sh_tmu_channel_setup(&tmu->channels[0], 0,
600 					   cfg->clockevent_rating != 0,
601 					   cfg->clocksource_rating != 0, tmu);
602 		if (ret < 0)
603 			goto err_unmap;
604 	} else {
605 		/*
606 		 * Use the first channel as a clock event device and the second
607 		 * channel as a clock source.
608 		 */
609 		for (i = 0; i < tmu->num_channels; ++i) {
610 			ret = sh_tmu_channel_setup(&tmu->channels[i], i,
611 						   i == 0, i == 1, tmu);
612 			if (ret < 0)
613 				goto err_unmap;
614 		}
615 	}
616 
617 	platform_set_drvdata(pdev, tmu);
618 
619 	return 0;
620 
621 err_unmap:
622 	kfree(tmu->channels);
623 	sh_tmu_unmap_memory(tmu);
624 err_clk_unprepare:
625 	clk_unprepare(tmu->clk);
626 err_clk_put:
627 	clk_put(tmu->clk);
628 	return ret;
629 }
630 
631 static int sh_tmu_probe(struct platform_device *pdev)
632 {
633 	struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
634 	int ret;
635 
636 	if (!is_early_platform_device(pdev)) {
637 		pm_runtime_set_active(&pdev->dev);
638 		pm_runtime_enable(&pdev->dev);
639 	}
640 
641 	if (tmu) {
642 		dev_info(&pdev->dev, "kept as earlytimer\n");
643 		goto out;
644 	}
645 
646 	tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
647 	if (tmu == NULL)
648 		return -ENOMEM;
649 
650 	ret = sh_tmu_setup(tmu, pdev);
651 	if (ret) {
652 		kfree(tmu);
653 		pm_runtime_idle(&pdev->dev);
654 		return ret;
655 	}
656 	if (is_early_platform_device(pdev))
657 		return 0;
658 
659  out:
660 	if (tmu->has_clockevent || tmu->has_clocksource)
661 		pm_runtime_irq_safe(&pdev->dev);
662 	else
663 		pm_runtime_idle(&pdev->dev);
664 
665 	return 0;
666 }
667 
668 static int sh_tmu_remove(struct platform_device *pdev)
669 {
670 	return -EBUSY; /* cannot unregister clockevent and clocksource */
671 }
672 
673 static const struct platform_device_id sh_tmu_id_table[] = {
674 	{ "sh_tmu", SH_TMU_LEGACY },
675 	{ "sh-tmu", SH_TMU },
676 	{ "sh-tmu-sh3", SH_TMU_SH3 },
677 	{ }
678 };
679 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
680 
681 static struct platform_driver sh_tmu_device_driver = {
682 	.probe		= sh_tmu_probe,
683 	.remove		= sh_tmu_remove,
684 	.driver		= {
685 		.name	= "sh_tmu",
686 	},
687 	.id_table	= sh_tmu_id_table,
688 };
689 
690 static int __init sh_tmu_init(void)
691 {
692 	return platform_driver_register(&sh_tmu_device_driver);
693 }
694 
695 static void __exit sh_tmu_exit(void)
696 {
697 	platform_driver_unregister(&sh_tmu_device_driver);
698 }
699 
700 early_platform_init("earlytimer", &sh_tmu_device_driver);
701 subsys_initcall(sh_tmu_init);
702 module_exit(sh_tmu_exit);
703 
704 MODULE_AUTHOR("Magnus Damm");
705 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
706 MODULE_LICENSE("GPL v2");
707