xref: /openbmc/linux/drivers/clocksource/sh_tmu.c (revision c819e2cf)
1 /*
2  * SuperH Timer Support - TMU
3  *
4  *  Copyright (C) 2009 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 enum sh_tmu_model {
36 	SH_TMU,
37 	SH_TMU_SH3,
38 };
39 
40 struct sh_tmu_device;
41 
42 struct sh_tmu_channel {
43 	struct sh_tmu_device *tmu;
44 	unsigned int index;
45 
46 	void __iomem *base;
47 	int irq;
48 
49 	unsigned long rate;
50 	unsigned long periodic;
51 	struct clock_event_device ced;
52 	struct clocksource cs;
53 	bool cs_enabled;
54 	unsigned int enable_count;
55 };
56 
57 struct sh_tmu_device {
58 	struct platform_device *pdev;
59 
60 	void __iomem *mapbase;
61 	struct clk *clk;
62 
63 	enum sh_tmu_model model;
64 
65 	raw_spinlock_t lock; /* Protect the shared start/stop register */
66 
67 	struct sh_tmu_channel *channels;
68 	unsigned int num_channels;
69 
70 	bool has_clockevent;
71 	bool has_clocksource;
72 };
73 
74 #define TSTR -1 /* shared register */
75 #define TCOR  0 /* channel register */
76 #define TCNT 1 /* channel register */
77 #define TCR 2 /* channel register */
78 
79 #define TCR_UNF			(1 << 8)
80 #define TCR_UNIE		(1 << 5)
81 #define TCR_TPSC_CLK4		(0 << 0)
82 #define TCR_TPSC_CLK16		(1 << 0)
83 #define TCR_TPSC_CLK64		(2 << 0)
84 #define TCR_TPSC_CLK256		(3 << 0)
85 #define TCR_TPSC_CLK1024	(4 << 0)
86 #define TCR_TPSC_MASK		(7 << 0)
87 
88 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
89 {
90 	unsigned long offs;
91 
92 	if (reg_nr == TSTR) {
93 		switch (ch->tmu->model) {
94 		case SH_TMU_SH3:
95 			return ioread8(ch->tmu->mapbase + 2);
96 		case SH_TMU:
97 			return ioread8(ch->tmu->mapbase + 4);
98 		}
99 	}
100 
101 	offs = reg_nr << 2;
102 
103 	if (reg_nr == TCR)
104 		return ioread16(ch->base + offs);
105 	else
106 		return ioread32(ch->base + offs);
107 }
108 
109 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
110 				unsigned long value)
111 {
112 	unsigned long offs;
113 
114 	if (reg_nr == TSTR) {
115 		switch (ch->tmu->model) {
116 		case SH_TMU_SH3:
117 			return iowrite8(value, ch->tmu->mapbase + 2);
118 		case SH_TMU:
119 			return iowrite8(value, ch->tmu->mapbase + 4);
120 		}
121 	}
122 
123 	offs = reg_nr << 2;
124 
125 	if (reg_nr == TCR)
126 		iowrite16(value, ch->base + offs);
127 	else
128 		iowrite32(value, ch->base + offs);
129 }
130 
131 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
132 {
133 	unsigned long flags, value;
134 
135 	/* start stop register shared by multiple timer channels */
136 	raw_spin_lock_irqsave(&ch->tmu->lock, flags);
137 	value = sh_tmu_read(ch, TSTR);
138 
139 	if (start)
140 		value |= 1 << ch->index;
141 	else
142 		value &= ~(1 << ch->index);
143 
144 	sh_tmu_write(ch, TSTR, value);
145 	raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
146 }
147 
148 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
149 {
150 	int ret;
151 
152 	/* enable clock */
153 	ret = clk_enable(ch->tmu->clk);
154 	if (ret) {
155 		dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
156 			ch->index);
157 		return ret;
158 	}
159 
160 	/* make sure channel is disabled */
161 	sh_tmu_start_stop_ch(ch, 0);
162 
163 	/* maximum timeout */
164 	sh_tmu_write(ch, TCOR, 0xffffffff);
165 	sh_tmu_write(ch, TCNT, 0xffffffff);
166 
167 	/* configure channel to parent clock / 4, irq off */
168 	ch->rate = clk_get_rate(ch->tmu->clk) / 4;
169 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
170 
171 	/* enable channel */
172 	sh_tmu_start_stop_ch(ch, 1);
173 
174 	return 0;
175 }
176 
177 static int sh_tmu_enable(struct sh_tmu_channel *ch)
178 {
179 	if (ch->enable_count++ > 0)
180 		return 0;
181 
182 	pm_runtime_get_sync(&ch->tmu->pdev->dev);
183 	dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
184 
185 	return __sh_tmu_enable(ch);
186 }
187 
188 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
189 {
190 	/* disable channel */
191 	sh_tmu_start_stop_ch(ch, 0);
192 
193 	/* disable interrupts in TMU block */
194 	sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
195 
196 	/* stop clock */
197 	clk_disable(ch->tmu->clk);
198 }
199 
200 static void sh_tmu_disable(struct sh_tmu_channel *ch)
201 {
202 	if (WARN_ON(ch->enable_count == 0))
203 		return;
204 
205 	if (--ch->enable_count > 0)
206 		return;
207 
208 	__sh_tmu_disable(ch);
209 
210 	dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
211 	pm_runtime_put(&ch->tmu->pdev->dev);
212 }
213 
214 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
215 			    int periodic)
216 {
217 	/* stop timer */
218 	sh_tmu_start_stop_ch(ch, 0);
219 
220 	/* acknowledge interrupt */
221 	sh_tmu_read(ch, TCR);
222 
223 	/* enable interrupt */
224 	sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
225 
226 	/* reload delta value in case of periodic timer */
227 	if (periodic)
228 		sh_tmu_write(ch, TCOR, delta);
229 	else
230 		sh_tmu_write(ch, TCOR, 0xffffffff);
231 
232 	sh_tmu_write(ch, TCNT, delta);
233 
234 	/* start timer */
235 	sh_tmu_start_stop_ch(ch, 1);
236 }
237 
238 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
239 {
240 	struct sh_tmu_channel *ch = dev_id;
241 
242 	/* disable or acknowledge interrupt */
243 	if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
244 		sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
245 	else
246 		sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
247 
248 	/* notify clockevent layer */
249 	ch->ced.event_handler(&ch->ced);
250 	return IRQ_HANDLED;
251 }
252 
253 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
254 {
255 	return container_of(cs, struct sh_tmu_channel, cs);
256 }
257 
258 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
259 {
260 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
261 
262 	return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
263 }
264 
265 static int sh_tmu_clocksource_enable(struct clocksource *cs)
266 {
267 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
268 	int ret;
269 
270 	if (WARN_ON(ch->cs_enabled))
271 		return 0;
272 
273 	ret = sh_tmu_enable(ch);
274 	if (!ret) {
275 		__clocksource_updatefreq_hz(cs, ch->rate);
276 		ch->cs_enabled = true;
277 	}
278 
279 	return ret;
280 }
281 
282 static void sh_tmu_clocksource_disable(struct clocksource *cs)
283 {
284 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
285 
286 	if (WARN_ON(!ch->cs_enabled))
287 		return;
288 
289 	sh_tmu_disable(ch);
290 	ch->cs_enabled = false;
291 }
292 
293 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
294 {
295 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
296 
297 	if (!ch->cs_enabled)
298 		return;
299 
300 	if (--ch->enable_count == 0) {
301 		__sh_tmu_disable(ch);
302 		pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
303 	}
304 }
305 
306 static void sh_tmu_clocksource_resume(struct clocksource *cs)
307 {
308 	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
309 
310 	if (!ch->cs_enabled)
311 		return;
312 
313 	if (ch->enable_count++ == 0) {
314 		pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
315 		__sh_tmu_enable(ch);
316 	}
317 }
318 
319 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
320 				       const char *name)
321 {
322 	struct clocksource *cs = &ch->cs;
323 
324 	cs->name = name;
325 	cs->rating = 200;
326 	cs->read = sh_tmu_clocksource_read;
327 	cs->enable = sh_tmu_clocksource_enable;
328 	cs->disable = sh_tmu_clocksource_disable;
329 	cs->suspend = sh_tmu_clocksource_suspend;
330 	cs->resume = sh_tmu_clocksource_resume;
331 	cs->mask = CLOCKSOURCE_MASK(32);
332 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
333 
334 	dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
335 		 ch->index);
336 
337 	/* Register with dummy 1 Hz value, gets updated in ->enable() */
338 	clocksource_register_hz(cs, 1);
339 	return 0;
340 }
341 
342 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
343 {
344 	return container_of(ced, struct sh_tmu_channel, ced);
345 }
346 
347 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
348 {
349 	struct clock_event_device *ced = &ch->ced;
350 
351 	sh_tmu_enable(ch);
352 
353 	clockevents_config(ced, ch->rate);
354 
355 	if (periodic) {
356 		ch->periodic = (ch->rate + HZ/2) / HZ;
357 		sh_tmu_set_next(ch, ch->periodic, 1);
358 	}
359 }
360 
361 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
362 				    struct clock_event_device *ced)
363 {
364 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
365 	int disabled = 0;
366 
367 	/* deal with old setting first */
368 	switch (ced->mode) {
369 	case CLOCK_EVT_MODE_PERIODIC:
370 	case CLOCK_EVT_MODE_ONESHOT:
371 		sh_tmu_disable(ch);
372 		disabled = 1;
373 		break;
374 	default:
375 		break;
376 	}
377 
378 	switch (mode) {
379 	case CLOCK_EVT_MODE_PERIODIC:
380 		dev_info(&ch->tmu->pdev->dev,
381 			 "ch%u: used for periodic clock events\n", ch->index);
382 		sh_tmu_clock_event_start(ch, 1);
383 		break;
384 	case CLOCK_EVT_MODE_ONESHOT:
385 		dev_info(&ch->tmu->pdev->dev,
386 			 "ch%u: used for oneshot clock events\n", ch->index);
387 		sh_tmu_clock_event_start(ch, 0);
388 		break;
389 	case CLOCK_EVT_MODE_UNUSED:
390 		if (!disabled)
391 			sh_tmu_disable(ch);
392 		break;
393 	case CLOCK_EVT_MODE_SHUTDOWN:
394 	default:
395 		break;
396 	}
397 }
398 
399 static int sh_tmu_clock_event_next(unsigned long delta,
400 				   struct clock_event_device *ced)
401 {
402 	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
403 
404 	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
405 
406 	/* program new delta value */
407 	sh_tmu_set_next(ch, delta, 0);
408 	return 0;
409 }
410 
411 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
412 {
413 	pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
414 }
415 
416 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
417 {
418 	pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
419 }
420 
421 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
422 				       const char *name)
423 {
424 	struct clock_event_device *ced = &ch->ced;
425 	int ret;
426 
427 	ced->name = name;
428 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
429 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
430 	ced->rating = 200;
431 	ced->cpumask = cpu_possible_mask;
432 	ced->set_next_event = sh_tmu_clock_event_next;
433 	ced->set_mode = sh_tmu_clock_event_mode;
434 	ced->suspend = sh_tmu_clock_event_suspend;
435 	ced->resume = sh_tmu_clock_event_resume;
436 
437 	dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
438 		 ch->index);
439 
440 	clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
441 
442 	ret = request_irq(ch->irq, sh_tmu_interrupt,
443 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
444 			  dev_name(&ch->tmu->pdev->dev), ch);
445 	if (ret) {
446 		dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
447 			ch->index, ch->irq);
448 		return;
449 	}
450 }
451 
452 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
453 			   bool clockevent, bool clocksource)
454 {
455 	if (clockevent) {
456 		ch->tmu->has_clockevent = true;
457 		sh_tmu_register_clockevent(ch, name);
458 	} else if (clocksource) {
459 		ch->tmu->has_clocksource = true;
460 		sh_tmu_register_clocksource(ch, name);
461 	}
462 
463 	return 0;
464 }
465 
466 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
467 				bool clockevent, bool clocksource,
468 				struct sh_tmu_device *tmu)
469 {
470 	/* Skip unused channels. */
471 	if (!clockevent && !clocksource)
472 		return 0;
473 
474 	ch->tmu = tmu;
475 	ch->index = index;
476 
477 	if (tmu->model == SH_TMU_SH3)
478 		ch->base = tmu->mapbase + 4 + ch->index * 12;
479 	else
480 		ch->base = tmu->mapbase + 8 + ch->index * 12;
481 
482 	ch->irq = platform_get_irq(tmu->pdev, index);
483 	if (ch->irq < 0) {
484 		dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
485 			ch->index);
486 		return ch->irq;
487 	}
488 
489 	ch->cs_enabled = false;
490 	ch->enable_count = 0;
491 
492 	return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
493 			       clockevent, clocksource);
494 }
495 
496 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
497 {
498 	struct resource *res;
499 
500 	res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
501 	if (!res) {
502 		dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
503 		return -ENXIO;
504 	}
505 
506 	tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
507 	if (tmu->mapbase == NULL)
508 		return -ENXIO;
509 
510 	return 0;
511 }
512 
513 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
514 {
515 	struct device_node *np = tmu->pdev->dev.of_node;
516 
517 	tmu->model = SH_TMU;
518 	tmu->num_channels = 3;
519 
520 	of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
521 
522 	if (tmu->num_channels != 2 && tmu->num_channels != 3) {
523 		dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
524 			tmu->num_channels);
525 		return -EINVAL;
526 	}
527 
528 	return 0;
529 }
530 
531 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
532 {
533 	unsigned int i;
534 	int ret;
535 
536 	tmu->pdev = pdev;
537 
538 	raw_spin_lock_init(&tmu->lock);
539 
540 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
541 		ret = sh_tmu_parse_dt(tmu);
542 		if (ret < 0)
543 			return ret;
544 	} else if (pdev->dev.platform_data) {
545 		const struct platform_device_id *id = pdev->id_entry;
546 		struct sh_timer_config *cfg = pdev->dev.platform_data;
547 
548 		tmu->model = id->driver_data;
549 		tmu->num_channels = hweight8(cfg->channels_mask);
550 	} else {
551 		dev_err(&tmu->pdev->dev, "missing platform data\n");
552 		return -ENXIO;
553 	}
554 
555 	/* Get hold of clock. */
556 	tmu->clk = clk_get(&tmu->pdev->dev, "fck");
557 	if (IS_ERR(tmu->clk)) {
558 		dev_err(&tmu->pdev->dev, "cannot get clock\n");
559 		return PTR_ERR(tmu->clk);
560 	}
561 
562 	ret = clk_prepare(tmu->clk);
563 	if (ret < 0)
564 		goto err_clk_put;
565 
566 	/* Map the memory resource. */
567 	ret = sh_tmu_map_memory(tmu);
568 	if (ret < 0) {
569 		dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
570 		goto err_clk_unprepare;
571 	}
572 
573 	/* Allocate and setup the channels. */
574 	tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
575 				GFP_KERNEL);
576 	if (tmu->channels == NULL) {
577 		ret = -ENOMEM;
578 		goto err_unmap;
579 	}
580 
581 	/*
582 	 * Use the first channel as a clock event device and the second channel
583 	 * as a clock source.
584 	 */
585 	for (i = 0; i < tmu->num_channels; ++i) {
586 		ret = sh_tmu_channel_setup(&tmu->channels[i], i,
587 					   i == 0, i == 1, tmu);
588 		if (ret < 0)
589 			goto err_unmap;
590 	}
591 
592 	platform_set_drvdata(pdev, tmu);
593 
594 	return 0;
595 
596 err_unmap:
597 	kfree(tmu->channels);
598 	iounmap(tmu->mapbase);
599 err_clk_unprepare:
600 	clk_unprepare(tmu->clk);
601 err_clk_put:
602 	clk_put(tmu->clk);
603 	return ret;
604 }
605 
606 static int sh_tmu_probe(struct platform_device *pdev)
607 {
608 	struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
609 	int ret;
610 
611 	if (!is_early_platform_device(pdev)) {
612 		pm_runtime_set_active(&pdev->dev);
613 		pm_runtime_enable(&pdev->dev);
614 	}
615 
616 	if (tmu) {
617 		dev_info(&pdev->dev, "kept as earlytimer\n");
618 		goto out;
619 	}
620 
621 	tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
622 	if (tmu == NULL)
623 		return -ENOMEM;
624 
625 	ret = sh_tmu_setup(tmu, pdev);
626 	if (ret) {
627 		kfree(tmu);
628 		pm_runtime_idle(&pdev->dev);
629 		return ret;
630 	}
631 	if (is_early_platform_device(pdev))
632 		return 0;
633 
634  out:
635 	if (tmu->has_clockevent || tmu->has_clocksource)
636 		pm_runtime_irq_safe(&pdev->dev);
637 	else
638 		pm_runtime_idle(&pdev->dev);
639 
640 	return 0;
641 }
642 
643 static int sh_tmu_remove(struct platform_device *pdev)
644 {
645 	return -EBUSY; /* cannot unregister clockevent and clocksource */
646 }
647 
648 static const struct platform_device_id sh_tmu_id_table[] = {
649 	{ "sh-tmu", SH_TMU },
650 	{ "sh-tmu-sh3", SH_TMU_SH3 },
651 	{ }
652 };
653 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
654 
655 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
656 	{ .compatible = "renesas,tmu" },
657 	{ }
658 };
659 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
660 
661 static struct platform_driver sh_tmu_device_driver = {
662 	.probe		= sh_tmu_probe,
663 	.remove		= sh_tmu_remove,
664 	.driver		= {
665 		.name	= "sh_tmu",
666 		.of_match_table = of_match_ptr(sh_tmu_of_table),
667 	},
668 	.id_table	= sh_tmu_id_table,
669 };
670 
671 static int __init sh_tmu_init(void)
672 {
673 	return platform_driver_register(&sh_tmu_device_driver);
674 }
675 
676 static void __exit sh_tmu_exit(void)
677 {
678 	platform_driver_unregister(&sh_tmu_device_driver);
679 }
680 
681 early_platform_init("earlytimer", &sh_tmu_device_driver);
682 subsys_initcall(sh_tmu_init);
683 module_exit(sh_tmu_exit);
684 
685 MODULE_AUTHOR("Magnus Damm");
686 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
687 MODULE_LICENSE("GPL v2");
688