1 /* 2 * SuperH Timer Support - TMU 3 * 4 * Copyright (C) 2009 Magnus Damm 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 #include <linux/init.h> 21 #include <linux/platform_device.h> 22 #include <linux/spinlock.h> 23 #include <linux/interrupt.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/io.h> 27 #include <linux/clk.h> 28 #include <linux/irq.h> 29 #include <linux/err.h> 30 #include <linux/clocksource.h> 31 #include <linux/clockchips.h> 32 #include <linux/sh_timer.h> 33 #include <linux/slab.h> 34 35 struct sh_tmu_priv { 36 void __iomem *mapbase; 37 struct clk *clk; 38 struct irqaction irqaction; 39 struct platform_device *pdev; 40 unsigned long rate; 41 unsigned long periodic; 42 struct clock_event_device ced; 43 struct clocksource cs; 44 }; 45 46 static DEFINE_SPINLOCK(sh_tmu_lock); 47 48 #define TSTR -1 /* shared register */ 49 #define TCOR 0 /* channel register */ 50 #define TCNT 1 /* channel register */ 51 #define TCR 2 /* channel register */ 52 53 static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr) 54 { 55 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 56 void __iomem *base = p->mapbase; 57 unsigned long offs; 58 59 if (reg_nr == TSTR) 60 return ioread8(base - cfg->channel_offset); 61 62 offs = reg_nr << 2; 63 64 if (reg_nr == TCR) 65 return ioread16(base + offs); 66 else 67 return ioread32(base + offs); 68 } 69 70 static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr, 71 unsigned long value) 72 { 73 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 74 void __iomem *base = p->mapbase; 75 unsigned long offs; 76 77 if (reg_nr == TSTR) { 78 iowrite8(value, base - cfg->channel_offset); 79 return; 80 } 81 82 offs = reg_nr << 2; 83 84 if (reg_nr == TCR) 85 iowrite16(value, base + offs); 86 else 87 iowrite32(value, base + offs); 88 } 89 90 static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start) 91 { 92 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 93 unsigned long flags, value; 94 95 /* start stop register shared by multiple timer channels */ 96 spin_lock_irqsave(&sh_tmu_lock, flags); 97 value = sh_tmu_read(p, TSTR); 98 99 if (start) 100 value |= 1 << cfg->timer_bit; 101 else 102 value &= ~(1 << cfg->timer_bit); 103 104 sh_tmu_write(p, TSTR, value); 105 spin_unlock_irqrestore(&sh_tmu_lock, flags); 106 } 107 108 static int sh_tmu_enable(struct sh_tmu_priv *p) 109 { 110 int ret; 111 112 /* enable clock */ 113 ret = clk_enable(p->clk); 114 if (ret) { 115 dev_err(&p->pdev->dev, "cannot enable clock\n"); 116 return ret; 117 } 118 119 /* make sure channel is disabled */ 120 sh_tmu_start_stop_ch(p, 0); 121 122 /* maximum timeout */ 123 sh_tmu_write(p, TCOR, 0xffffffff); 124 sh_tmu_write(p, TCNT, 0xffffffff); 125 126 /* configure channel to parent clock / 4, irq off */ 127 p->rate = clk_get_rate(p->clk) / 4; 128 sh_tmu_write(p, TCR, 0x0000); 129 130 /* enable channel */ 131 sh_tmu_start_stop_ch(p, 1); 132 133 return 0; 134 } 135 136 static void sh_tmu_disable(struct sh_tmu_priv *p) 137 { 138 /* disable channel */ 139 sh_tmu_start_stop_ch(p, 0); 140 141 /* disable interrupts in TMU block */ 142 sh_tmu_write(p, TCR, 0x0000); 143 144 /* stop clock */ 145 clk_disable(p->clk); 146 } 147 148 static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta, 149 int periodic) 150 { 151 /* stop timer */ 152 sh_tmu_start_stop_ch(p, 0); 153 154 /* acknowledge interrupt */ 155 sh_tmu_read(p, TCR); 156 157 /* enable interrupt */ 158 sh_tmu_write(p, TCR, 0x0020); 159 160 /* reload delta value in case of periodic timer */ 161 if (periodic) 162 sh_tmu_write(p, TCOR, delta); 163 else 164 sh_tmu_write(p, TCOR, 0xffffffff); 165 166 sh_tmu_write(p, TCNT, delta); 167 168 /* start timer */ 169 sh_tmu_start_stop_ch(p, 1); 170 } 171 172 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id) 173 { 174 struct sh_tmu_priv *p = dev_id; 175 176 /* disable or acknowledge interrupt */ 177 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) 178 sh_tmu_write(p, TCR, 0x0000); 179 else 180 sh_tmu_write(p, TCR, 0x0020); 181 182 /* notify clockevent layer */ 183 p->ced.event_handler(&p->ced); 184 return IRQ_HANDLED; 185 } 186 187 static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs) 188 { 189 return container_of(cs, struct sh_tmu_priv, cs); 190 } 191 192 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs) 193 { 194 struct sh_tmu_priv *p = cs_to_sh_tmu(cs); 195 196 return sh_tmu_read(p, TCNT) ^ 0xffffffff; 197 } 198 199 static int sh_tmu_clocksource_enable(struct clocksource *cs) 200 { 201 struct sh_tmu_priv *p = cs_to_sh_tmu(cs); 202 203 return sh_tmu_enable(p); 204 } 205 206 static void sh_tmu_clocksource_disable(struct clocksource *cs) 207 { 208 sh_tmu_disable(cs_to_sh_tmu(cs)); 209 } 210 211 static int sh_tmu_register_clocksource(struct sh_tmu_priv *p, 212 char *name, unsigned long rating) 213 { 214 struct clocksource *cs = &p->cs; 215 216 cs->name = name; 217 cs->rating = rating; 218 cs->read = sh_tmu_clocksource_read; 219 cs->enable = sh_tmu_clocksource_enable; 220 cs->disable = sh_tmu_clocksource_disable; 221 cs->mask = CLOCKSOURCE_MASK(32); 222 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; 223 224 /* clk_get_rate() needs an enabled clock */ 225 clk_enable(p->clk); 226 /* channel will be configured at parent clock / 4 */ 227 p->rate = clk_get_rate(p->clk) / 4; 228 clk_disable(p->clk); 229 /* TODO: calculate good shift from rate and counter bit width */ 230 cs->shift = 10; 231 cs->mult = clocksource_hz2mult(p->rate, cs->shift); 232 233 dev_info(&p->pdev->dev, "used as clock source\n"); 234 clocksource_register(cs); 235 return 0; 236 } 237 238 static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced) 239 { 240 return container_of(ced, struct sh_tmu_priv, ced); 241 } 242 243 static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic) 244 { 245 struct clock_event_device *ced = &p->ced; 246 247 sh_tmu_enable(p); 248 249 /* TODO: calculate good shift from rate and counter bit width */ 250 251 ced->shift = 32; 252 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift); 253 ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced); 254 ced->min_delta_ns = 5000; 255 256 if (periodic) { 257 p->periodic = (p->rate + HZ/2) / HZ; 258 sh_tmu_set_next(p, p->periodic, 1); 259 } 260 } 261 262 static void sh_tmu_clock_event_mode(enum clock_event_mode mode, 263 struct clock_event_device *ced) 264 { 265 struct sh_tmu_priv *p = ced_to_sh_tmu(ced); 266 int disabled = 0; 267 268 /* deal with old setting first */ 269 switch (ced->mode) { 270 case CLOCK_EVT_MODE_PERIODIC: 271 case CLOCK_EVT_MODE_ONESHOT: 272 sh_tmu_disable(p); 273 disabled = 1; 274 break; 275 default: 276 break; 277 } 278 279 switch (mode) { 280 case CLOCK_EVT_MODE_PERIODIC: 281 dev_info(&p->pdev->dev, "used for periodic clock events\n"); 282 sh_tmu_clock_event_start(p, 1); 283 break; 284 case CLOCK_EVT_MODE_ONESHOT: 285 dev_info(&p->pdev->dev, "used for oneshot clock events\n"); 286 sh_tmu_clock_event_start(p, 0); 287 break; 288 case CLOCK_EVT_MODE_UNUSED: 289 if (!disabled) 290 sh_tmu_disable(p); 291 break; 292 case CLOCK_EVT_MODE_SHUTDOWN: 293 default: 294 break; 295 } 296 } 297 298 static int sh_tmu_clock_event_next(unsigned long delta, 299 struct clock_event_device *ced) 300 { 301 struct sh_tmu_priv *p = ced_to_sh_tmu(ced); 302 303 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT); 304 305 /* program new delta value */ 306 sh_tmu_set_next(p, delta, 0); 307 return 0; 308 } 309 310 static void sh_tmu_register_clockevent(struct sh_tmu_priv *p, 311 char *name, unsigned long rating) 312 { 313 struct clock_event_device *ced = &p->ced; 314 int ret; 315 316 memset(ced, 0, sizeof(*ced)); 317 318 ced->name = name; 319 ced->features = CLOCK_EVT_FEAT_PERIODIC; 320 ced->features |= CLOCK_EVT_FEAT_ONESHOT; 321 ced->rating = rating; 322 ced->cpumask = cpumask_of(0); 323 ced->set_next_event = sh_tmu_clock_event_next; 324 ced->set_mode = sh_tmu_clock_event_mode; 325 326 dev_info(&p->pdev->dev, "used for clock events\n"); 327 clockevents_register_device(ced); 328 329 ret = setup_irq(p->irqaction.irq, &p->irqaction); 330 if (ret) { 331 dev_err(&p->pdev->dev, "failed to request irq %d\n", 332 p->irqaction.irq); 333 return; 334 } 335 } 336 337 static int sh_tmu_register(struct sh_tmu_priv *p, char *name, 338 unsigned long clockevent_rating, 339 unsigned long clocksource_rating) 340 { 341 if (clockevent_rating) 342 sh_tmu_register_clockevent(p, name, clockevent_rating); 343 else if (clocksource_rating) 344 sh_tmu_register_clocksource(p, name, clocksource_rating); 345 346 return 0; 347 } 348 349 static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev) 350 { 351 struct sh_timer_config *cfg = pdev->dev.platform_data; 352 struct resource *res; 353 int irq, ret; 354 ret = -ENXIO; 355 356 memset(p, 0, sizeof(*p)); 357 p->pdev = pdev; 358 359 if (!cfg) { 360 dev_err(&p->pdev->dev, "missing platform data\n"); 361 goto err0; 362 } 363 364 platform_set_drvdata(pdev, p); 365 366 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0); 367 if (!res) { 368 dev_err(&p->pdev->dev, "failed to get I/O memory\n"); 369 goto err0; 370 } 371 372 irq = platform_get_irq(p->pdev, 0); 373 if (irq < 0) { 374 dev_err(&p->pdev->dev, "failed to get irq\n"); 375 goto err0; 376 } 377 378 /* map memory, let mapbase point to our channel */ 379 p->mapbase = ioremap_nocache(res->start, resource_size(res)); 380 if (p->mapbase == NULL) { 381 dev_err(&p->pdev->dev, "failed to remap I/O memory\n"); 382 goto err0; 383 } 384 385 /* setup data for setup_irq() (too early for request_irq()) */ 386 p->irqaction.name = dev_name(&p->pdev->dev); 387 p->irqaction.handler = sh_tmu_interrupt; 388 p->irqaction.dev_id = p; 389 p->irqaction.irq = irq; 390 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \ 391 IRQF_IRQPOLL | IRQF_NOBALANCING; 392 393 /* get hold of clock */ 394 p->clk = clk_get(&p->pdev->dev, "tmu_fck"); 395 if (IS_ERR(p->clk)) { 396 dev_err(&p->pdev->dev, "cannot get clock\n"); 397 ret = PTR_ERR(p->clk); 398 goto err1; 399 } 400 401 return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev), 402 cfg->clockevent_rating, 403 cfg->clocksource_rating); 404 err1: 405 iounmap(p->mapbase); 406 err0: 407 return ret; 408 } 409 410 static int __devinit sh_tmu_probe(struct platform_device *pdev) 411 { 412 struct sh_tmu_priv *p = platform_get_drvdata(pdev); 413 int ret; 414 415 if (p) { 416 dev_info(&pdev->dev, "kept as earlytimer\n"); 417 return 0; 418 } 419 420 p = kmalloc(sizeof(*p), GFP_KERNEL); 421 if (p == NULL) { 422 dev_err(&pdev->dev, "failed to allocate driver data\n"); 423 return -ENOMEM; 424 } 425 426 ret = sh_tmu_setup(p, pdev); 427 if (ret) { 428 kfree(p); 429 platform_set_drvdata(pdev, NULL); 430 } 431 return ret; 432 } 433 434 static int __devexit sh_tmu_remove(struct platform_device *pdev) 435 { 436 return -EBUSY; /* cannot unregister clockevent and clocksource */ 437 } 438 439 static struct platform_driver sh_tmu_device_driver = { 440 .probe = sh_tmu_probe, 441 .remove = __devexit_p(sh_tmu_remove), 442 .driver = { 443 .name = "sh_tmu", 444 } 445 }; 446 447 static int __init sh_tmu_init(void) 448 { 449 return platform_driver_register(&sh_tmu_device_driver); 450 } 451 452 static void __exit sh_tmu_exit(void) 453 { 454 platform_driver_unregister(&sh_tmu_device_driver); 455 } 456 457 early_platform_init("earlytimer", &sh_tmu_device_driver); 458 module_init(sh_tmu_init); 459 module_exit(sh_tmu_exit); 460 461 MODULE_AUTHOR("Magnus Damm"); 462 MODULE_DESCRIPTION("SuperH TMU Timer Driver"); 463 MODULE_LICENSE("GPL v2"); 464