1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SuperH Timer Support - TMU 4 * 5 * Copyright (C) 2009 Magnus Damm 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/clockchips.h> 10 #include <linux/clocksource.h> 11 #include <linux/delay.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ioport.h> 17 #include <linux/irq.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_domain.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/sh_timer.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 27 #ifdef CONFIG_SUPERH 28 #include <asm/platform_early.h> 29 #endif 30 31 enum sh_tmu_model { 32 SH_TMU, 33 SH_TMU_SH3, 34 }; 35 36 struct sh_tmu_device; 37 38 struct sh_tmu_channel { 39 struct sh_tmu_device *tmu; 40 unsigned int index; 41 42 void __iomem *base; 43 int irq; 44 45 unsigned long periodic; 46 struct clock_event_device ced; 47 struct clocksource cs; 48 bool cs_enabled; 49 unsigned int enable_count; 50 }; 51 52 struct sh_tmu_device { 53 struct platform_device *pdev; 54 55 void __iomem *mapbase; 56 struct clk *clk; 57 unsigned long rate; 58 59 enum sh_tmu_model model; 60 61 raw_spinlock_t lock; /* Protect the shared start/stop register */ 62 63 struct sh_tmu_channel *channels; 64 unsigned int num_channels; 65 66 bool has_clockevent; 67 bool has_clocksource; 68 }; 69 70 #define TSTR -1 /* shared register */ 71 #define TCOR 0 /* channel register */ 72 #define TCNT 1 /* channel register */ 73 #define TCR 2 /* channel register */ 74 75 #define TCR_UNF (1 << 8) 76 #define TCR_UNIE (1 << 5) 77 #define TCR_TPSC_CLK4 (0 << 0) 78 #define TCR_TPSC_CLK16 (1 << 0) 79 #define TCR_TPSC_CLK64 (2 << 0) 80 #define TCR_TPSC_CLK256 (3 << 0) 81 #define TCR_TPSC_CLK1024 (4 << 0) 82 #define TCR_TPSC_MASK (7 << 0) 83 84 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr) 85 { 86 unsigned long offs; 87 88 if (reg_nr == TSTR) { 89 switch (ch->tmu->model) { 90 case SH_TMU_SH3: 91 return ioread8(ch->tmu->mapbase + 2); 92 case SH_TMU: 93 return ioread8(ch->tmu->mapbase + 4); 94 } 95 } 96 97 offs = reg_nr << 2; 98 99 if (reg_nr == TCR) 100 return ioread16(ch->base + offs); 101 else 102 return ioread32(ch->base + offs); 103 } 104 105 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr, 106 unsigned long value) 107 { 108 unsigned long offs; 109 110 if (reg_nr == TSTR) { 111 switch (ch->tmu->model) { 112 case SH_TMU_SH3: 113 return iowrite8(value, ch->tmu->mapbase + 2); 114 case SH_TMU: 115 return iowrite8(value, ch->tmu->mapbase + 4); 116 } 117 } 118 119 offs = reg_nr << 2; 120 121 if (reg_nr == TCR) 122 iowrite16(value, ch->base + offs); 123 else 124 iowrite32(value, ch->base + offs); 125 } 126 127 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start) 128 { 129 unsigned long flags, value; 130 131 /* start stop register shared by multiple timer channels */ 132 raw_spin_lock_irqsave(&ch->tmu->lock, flags); 133 value = sh_tmu_read(ch, TSTR); 134 135 if (start) 136 value |= 1 << ch->index; 137 else 138 value &= ~(1 << ch->index); 139 140 sh_tmu_write(ch, TSTR, value); 141 raw_spin_unlock_irqrestore(&ch->tmu->lock, flags); 142 } 143 144 static int __sh_tmu_enable(struct sh_tmu_channel *ch) 145 { 146 int ret; 147 148 /* enable clock */ 149 ret = clk_enable(ch->tmu->clk); 150 if (ret) { 151 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n", 152 ch->index); 153 return ret; 154 } 155 156 /* make sure channel is disabled */ 157 sh_tmu_start_stop_ch(ch, 0); 158 159 /* maximum timeout */ 160 sh_tmu_write(ch, TCOR, 0xffffffff); 161 sh_tmu_write(ch, TCNT, 0xffffffff); 162 163 /* configure channel to parent clock / 4, irq off */ 164 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); 165 166 /* enable channel */ 167 sh_tmu_start_stop_ch(ch, 1); 168 169 return 0; 170 } 171 172 static int sh_tmu_enable(struct sh_tmu_channel *ch) 173 { 174 if (ch->enable_count++ > 0) 175 return 0; 176 177 pm_runtime_get_sync(&ch->tmu->pdev->dev); 178 dev_pm_syscore_device(&ch->tmu->pdev->dev, true); 179 180 return __sh_tmu_enable(ch); 181 } 182 183 static void __sh_tmu_disable(struct sh_tmu_channel *ch) 184 { 185 /* disable channel */ 186 sh_tmu_start_stop_ch(ch, 0); 187 188 /* disable interrupts in TMU block */ 189 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); 190 191 /* stop clock */ 192 clk_disable(ch->tmu->clk); 193 } 194 195 static void sh_tmu_disable(struct sh_tmu_channel *ch) 196 { 197 if (WARN_ON(ch->enable_count == 0)) 198 return; 199 200 if (--ch->enable_count > 0) 201 return; 202 203 __sh_tmu_disable(ch); 204 205 dev_pm_syscore_device(&ch->tmu->pdev->dev, false); 206 pm_runtime_put(&ch->tmu->pdev->dev); 207 } 208 209 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta, 210 int periodic) 211 { 212 /* stop timer */ 213 sh_tmu_start_stop_ch(ch, 0); 214 215 /* acknowledge interrupt */ 216 sh_tmu_read(ch, TCR); 217 218 /* enable interrupt */ 219 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4); 220 221 /* reload delta value in case of periodic timer */ 222 if (periodic) 223 sh_tmu_write(ch, TCOR, delta); 224 else 225 sh_tmu_write(ch, TCOR, 0xffffffff); 226 227 sh_tmu_write(ch, TCNT, delta); 228 229 /* start timer */ 230 sh_tmu_start_stop_ch(ch, 1); 231 } 232 233 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id) 234 { 235 struct sh_tmu_channel *ch = dev_id; 236 237 /* disable or acknowledge interrupt */ 238 if (clockevent_state_oneshot(&ch->ced)) 239 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); 240 else 241 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4); 242 243 /* notify clockevent layer */ 244 ch->ced.event_handler(&ch->ced); 245 return IRQ_HANDLED; 246 } 247 248 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs) 249 { 250 return container_of(cs, struct sh_tmu_channel, cs); 251 } 252 253 static u64 sh_tmu_clocksource_read(struct clocksource *cs) 254 { 255 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 256 257 return sh_tmu_read(ch, TCNT) ^ 0xffffffff; 258 } 259 260 static int sh_tmu_clocksource_enable(struct clocksource *cs) 261 { 262 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 263 int ret; 264 265 if (WARN_ON(ch->cs_enabled)) 266 return 0; 267 268 ret = sh_tmu_enable(ch); 269 if (!ret) 270 ch->cs_enabled = true; 271 272 return ret; 273 } 274 275 static void sh_tmu_clocksource_disable(struct clocksource *cs) 276 { 277 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 278 279 if (WARN_ON(!ch->cs_enabled)) 280 return; 281 282 sh_tmu_disable(ch); 283 ch->cs_enabled = false; 284 } 285 286 static void sh_tmu_clocksource_suspend(struct clocksource *cs) 287 { 288 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 289 290 if (!ch->cs_enabled) 291 return; 292 293 if (--ch->enable_count == 0) { 294 __sh_tmu_disable(ch); 295 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev); 296 } 297 } 298 299 static void sh_tmu_clocksource_resume(struct clocksource *cs) 300 { 301 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 302 303 if (!ch->cs_enabled) 304 return; 305 306 if (ch->enable_count++ == 0) { 307 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev); 308 __sh_tmu_enable(ch); 309 } 310 } 311 312 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch, 313 const char *name) 314 { 315 struct clocksource *cs = &ch->cs; 316 317 cs->name = name; 318 cs->rating = 200; 319 cs->read = sh_tmu_clocksource_read; 320 cs->enable = sh_tmu_clocksource_enable; 321 cs->disable = sh_tmu_clocksource_disable; 322 cs->suspend = sh_tmu_clocksource_suspend; 323 cs->resume = sh_tmu_clocksource_resume; 324 cs->mask = CLOCKSOURCE_MASK(32); 325 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; 326 327 dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n", 328 ch->index); 329 330 clocksource_register_hz(cs, ch->tmu->rate); 331 return 0; 332 } 333 334 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced) 335 { 336 return container_of(ced, struct sh_tmu_channel, ced); 337 } 338 339 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic) 340 { 341 sh_tmu_enable(ch); 342 343 if (periodic) { 344 ch->periodic = (ch->tmu->rate + HZ/2) / HZ; 345 sh_tmu_set_next(ch, ch->periodic, 1); 346 } 347 } 348 349 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced) 350 { 351 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); 352 353 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) 354 sh_tmu_disable(ch); 355 return 0; 356 } 357 358 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced, 359 int periodic) 360 { 361 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); 362 363 /* deal with old setting first */ 364 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) 365 sh_tmu_disable(ch); 366 367 dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n", 368 ch->index, periodic ? "periodic" : "oneshot"); 369 sh_tmu_clock_event_start(ch, periodic); 370 return 0; 371 } 372 373 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced) 374 { 375 return sh_tmu_clock_event_set_state(ced, 0); 376 } 377 378 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced) 379 { 380 return sh_tmu_clock_event_set_state(ced, 1); 381 } 382 383 static int sh_tmu_clock_event_next(unsigned long delta, 384 struct clock_event_device *ced) 385 { 386 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); 387 388 BUG_ON(!clockevent_state_oneshot(ced)); 389 390 /* program new delta value */ 391 sh_tmu_set_next(ch, delta, 0); 392 return 0; 393 } 394 395 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced) 396 { 397 pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev); 398 } 399 400 static void sh_tmu_clock_event_resume(struct clock_event_device *ced) 401 { 402 pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev); 403 } 404 405 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch, 406 const char *name) 407 { 408 struct clock_event_device *ced = &ch->ced; 409 int ret; 410 411 ced->name = name; 412 ced->features = CLOCK_EVT_FEAT_PERIODIC; 413 ced->features |= CLOCK_EVT_FEAT_ONESHOT; 414 ced->rating = 200; 415 ced->cpumask = cpu_possible_mask; 416 ced->set_next_event = sh_tmu_clock_event_next; 417 ced->set_state_shutdown = sh_tmu_clock_event_shutdown; 418 ced->set_state_periodic = sh_tmu_clock_event_set_periodic; 419 ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot; 420 ced->suspend = sh_tmu_clock_event_suspend; 421 ced->resume = sh_tmu_clock_event_resume; 422 423 dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n", 424 ch->index); 425 426 clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff); 427 428 ret = request_irq(ch->irq, sh_tmu_interrupt, 429 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, 430 dev_name(&ch->tmu->pdev->dev), ch); 431 if (ret) { 432 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n", 433 ch->index, ch->irq); 434 return; 435 } 436 } 437 438 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name, 439 bool clockevent, bool clocksource) 440 { 441 if (clockevent) { 442 ch->tmu->has_clockevent = true; 443 sh_tmu_register_clockevent(ch, name); 444 } else if (clocksource) { 445 ch->tmu->has_clocksource = true; 446 sh_tmu_register_clocksource(ch, name); 447 } 448 449 return 0; 450 } 451 452 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index, 453 bool clockevent, bool clocksource, 454 struct sh_tmu_device *tmu) 455 { 456 /* Skip unused channels. */ 457 if (!clockevent && !clocksource) 458 return 0; 459 460 ch->tmu = tmu; 461 ch->index = index; 462 463 if (tmu->model == SH_TMU_SH3) 464 ch->base = tmu->mapbase + 4 + ch->index * 12; 465 else 466 ch->base = tmu->mapbase + 8 + ch->index * 12; 467 468 ch->irq = platform_get_irq(tmu->pdev, index); 469 if (ch->irq < 0) 470 return ch->irq; 471 472 ch->cs_enabled = false; 473 ch->enable_count = 0; 474 475 return sh_tmu_register(ch, dev_name(&tmu->pdev->dev), 476 clockevent, clocksource); 477 } 478 479 static int sh_tmu_map_memory(struct sh_tmu_device *tmu) 480 { 481 struct resource *res; 482 483 res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0); 484 if (!res) { 485 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n"); 486 return -ENXIO; 487 } 488 489 tmu->mapbase = ioremap(res->start, resource_size(res)); 490 if (tmu->mapbase == NULL) 491 return -ENXIO; 492 493 return 0; 494 } 495 496 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu) 497 { 498 struct device_node *np = tmu->pdev->dev.of_node; 499 500 tmu->model = SH_TMU; 501 tmu->num_channels = 3; 502 503 of_property_read_u32(np, "#renesas,channels", &tmu->num_channels); 504 505 if (tmu->num_channels != 2 && tmu->num_channels != 3) { 506 dev_err(&tmu->pdev->dev, "invalid number of channels %u\n", 507 tmu->num_channels); 508 return -EINVAL; 509 } 510 511 return 0; 512 } 513 514 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev) 515 { 516 unsigned int i; 517 int ret; 518 519 tmu->pdev = pdev; 520 521 raw_spin_lock_init(&tmu->lock); 522 523 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { 524 ret = sh_tmu_parse_dt(tmu); 525 if (ret < 0) 526 return ret; 527 } else if (pdev->dev.platform_data) { 528 const struct platform_device_id *id = pdev->id_entry; 529 struct sh_timer_config *cfg = pdev->dev.platform_data; 530 531 tmu->model = id->driver_data; 532 tmu->num_channels = hweight8(cfg->channels_mask); 533 } else { 534 dev_err(&tmu->pdev->dev, "missing platform data\n"); 535 return -ENXIO; 536 } 537 538 /* Get hold of clock. */ 539 tmu->clk = clk_get(&tmu->pdev->dev, "fck"); 540 if (IS_ERR(tmu->clk)) { 541 dev_err(&tmu->pdev->dev, "cannot get clock\n"); 542 return PTR_ERR(tmu->clk); 543 } 544 545 ret = clk_prepare(tmu->clk); 546 if (ret < 0) 547 goto err_clk_put; 548 549 /* Determine clock rate. */ 550 ret = clk_enable(tmu->clk); 551 if (ret < 0) 552 goto err_clk_unprepare; 553 554 tmu->rate = clk_get_rate(tmu->clk) / 4; 555 clk_disable(tmu->clk); 556 557 /* Map the memory resource. */ 558 ret = sh_tmu_map_memory(tmu); 559 if (ret < 0) { 560 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n"); 561 goto err_clk_unprepare; 562 } 563 564 /* Allocate and setup the channels. */ 565 tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels), 566 GFP_KERNEL); 567 if (tmu->channels == NULL) { 568 ret = -ENOMEM; 569 goto err_unmap; 570 } 571 572 /* 573 * Use the first channel as a clock event device and the second channel 574 * as a clock source. 575 */ 576 for (i = 0; i < tmu->num_channels; ++i) { 577 ret = sh_tmu_channel_setup(&tmu->channels[i], i, 578 i == 0, i == 1, tmu); 579 if (ret < 0) 580 goto err_unmap; 581 } 582 583 platform_set_drvdata(pdev, tmu); 584 585 return 0; 586 587 err_unmap: 588 kfree(tmu->channels); 589 iounmap(tmu->mapbase); 590 err_clk_unprepare: 591 clk_unprepare(tmu->clk); 592 err_clk_put: 593 clk_put(tmu->clk); 594 return ret; 595 } 596 597 static int sh_tmu_probe(struct platform_device *pdev) 598 { 599 struct sh_tmu_device *tmu = platform_get_drvdata(pdev); 600 int ret; 601 602 if (!is_sh_early_platform_device(pdev)) { 603 pm_runtime_set_active(&pdev->dev); 604 pm_runtime_enable(&pdev->dev); 605 } 606 607 if (tmu) { 608 dev_info(&pdev->dev, "kept as earlytimer\n"); 609 goto out; 610 } 611 612 tmu = kzalloc(sizeof(*tmu), GFP_KERNEL); 613 if (tmu == NULL) 614 return -ENOMEM; 615 616 ret = sh_tmu_setup(tmu, pdev); 617 if (ret) { 618 kfree(tmu); 619 pm_runtime_idle(&pdev->dev); 620 return ret; 621 } 622 623 if (is_sh_early_platform_device(pdev)) 624 return 0; 625 626 out: 627 if (tmu->has_clockevent || tmu->has_clocksource) 628 pm_runtime_irq_safe(&pdev->dev); 629 else 630 pm_runtime_idle(&pdev->dev); 631 632 return 0; 633 } 634 635 static int sh_tmu_remove(struct platform_device *pdev) 636 { 637 return -EBUSY; /* cannot unregister clockevent and clocksource */ 638 } 639 640 static const struct platform_device_id sh_tmu_id_table[] = { 641 { "sh-tmu", SH_TMU }, 642 { "sh-tmu-sh3", SH_TMU_SH3 }, 643 { } 644 }; 645 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table); 646 647 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = { 648 { .compatible = "renesas,tmu" }, 649 { } 650 }; 651 MODULE_DEVICE_TABLE(of, sh_tmu_of_table); 652 653 static struct platform_driver sh_tmu_device_driver = { 654 .probe = sh_tmu_probe, 655 .remove = sh_tmu_remove, 656 .driver = { 657 .name = "sh_tmu", 658 .of_match_table = of_match_ptr(sh_tmu_of_table), 659 }, 660 .id_table = sh_tmu_id_table, 661 }; 662 663 static int __init sh_tmu_init(void) 664 { 665 return platform_driver_register(&sh_tmu_device_driver); 666 } 667 668 static void __exit sh_tmu_exit(void) 669 { 670 platform_driver_unregister(&sh_tmu_device_driver); 671 } 672 673 #ifdef CONFIG_SUPERH 674 sh_early_platform_init("earlytimer", &sh_tmu_device_driver); 675 #endif 676 677 subsys_initcall(sh_tmu_init); 678 module_exit(sh_tmu_exit); 679 680 MODULE_AUTHOR("Magnus Damm"); 681 MODULE_DESCRIPTION("SuperH TMU Timer Driver"); 682 MODULE_LICENSE("GPL v2"); 683