xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision f8e17c17)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 
120 	raw_spinlock_t lock; /* Protect the shared start/stop register */
121 
122 	struct sh_cmt_channel *channels;
123 	unsigned int num_channels;
124 	unsigned int hw_channels;
125 
126 	bool has_clockevent;
127 	bool has_clocksource;
128 };
129 
130 #define SH_CMT16_CMCSR_CMF		(1 << 7)
131 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
132 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
133 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
134 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
135 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
137 
138 #define SH_CMT32_CMCSR_CMF		(1 << 15)
139 #define SH_CMT32_CMCSR_OVF		(1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
141 #define SH_CMT32_CMCSR_STTF		(1 << 12)
142 #define SH_CMT32_CMCSR_STPF		(1 << 11)
143 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
144 #define SH_CMT32_CMCSR_CMS		(1 << 9)
145 #define SH_CMT32_CMCSR_CMM		(1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
157 
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160 	return ioread16(base + (offs << 1));
161 }
162 
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165 	return ioread32(base + (offs << 2));
166 }
167 
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170 	iowrite16(value, base + (offs << 1));
171 }
172 
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175 	iowrite32(value, base + (offs << 2));
176 }
177 
178 static const struct sh_cmt_info sh_cmt_info[] = {
179 	[SH_CMT_16BIT] = {
180 		.model = SH_CMT_16BIT,
181 		.width = 16,
182 		.overflow_bit = SH_CMT16_CMCSR_CMF,
183 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
184 		.read_control = sh_cmt_read16,
185 		.write_control = sh_cmt_write16,
186 		.read_count = sh_cmt_read16,
187 		.write_count = sh_cmt_write16,
188 	},
189 	[SH_CMT_32BIT] = {
190 		.model = SH_CMT_32BIT,
191 		.width = 32,
192 		.overflow_bit = SH_CMT32_CMCSR_CMF,
193 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 		.read_control = sh_cmt_read16,
195 		.write_control = sh_cmt_write16,
196 		.read_count = sh_cmt_read32,
197 		.write_count = sh_cmt_write32,
198 	},
199 	[SH_CMT_48BIT] = {
200 		.model = SH_CMT_48BIT,
201 		.channels_mask = 0x3f,
202 		.width = 32,
203 		.overflow_bit = SH_CMT32_CMCSR_CMF,
204 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 		.read_control = sh_cmt_read32,
206 		.write_control = sh_cmt_write32,
207 		.read_count = sh_cmt_read32,
208 		.write_count = sh_cmt_write32,
209 	},
210 	[SH_CMT0_RCAR_GEN2] = {
211 		.model = SH_CMT0_RCAR_GEN2,
212 		.channels_mask = 0x60,
213 		.width = 32,
214 		.overflow_bit = SH_CMT32_CMCSR_CMF,
215 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 		.read_control = sh_cmt_read32,
217 		.write_control = sh_cmt_write32,
218 		.read_count = sh_cmt_read32,
219 		.write_count = sh_cmt_write32,
220 	},
221 	[SH_CMT1_RCAR_GEN2] = {
222 		.model = SH_CMT1_RCAR_GEN2,
223 		.channels_mask = 0xff,
224 		.width = 32,
225 		.overflow_bit = SH_CMT32_CMCSR_CMF,
226 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 		.read_control = sh_cmt_read32,
228 		.write_control = sh_cmt_write32,
229 		.read_count = sh_cmt_read32,
230 		.write_count = sh_cmt_write32,
231 	},
232 };
233 
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237 
238 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239 {
240 	if (ch->iostart)
241 		return ch->cmt->info->read_control(ch->iostart, 0);
242 	else
243 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244 }
245 
246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247 {
248 	if (ch->iostart)
249 		ch->cmt->info->write_control(ch->iostart, 0, value);
250 	else
251 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253 
254 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258 
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260 {
261 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262 }
263 
264 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265 {
266 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267 }
268 
269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270 {
271 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272 }
273 
274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275 {
276 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277 }
278 
279 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280 {
281 	u32 v1, v2, v3;
282 	u32 o1, o2;
283 
284 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285 
286 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
287 	do {
288 		o2 = o1;
289 		v1 = sh_cmt_read_cmcnt(ch);
290 		v2 = sh_cmt_read_cmcnt(ch);
291 		v3 = sh_cmt_read_cmcnt(ch);
292 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295 
296 	*has_wrapped = o1;
297 	return v2;
298 }
299 
300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301 {
302 	unsigned long flags;
303 	u32 value;
304 
305 	/* start stop register shared by multiple timer channels */
306 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307 	value = sh_cmt_read_cmstr(ch);
308 
309 	if (start)
310 		value |= 1 << ch->timer_bit;
311 	else
312 		value &= ~(1 << ch->timer_bit);
313 
314 	sh_cmt_write_cmstr(ch, value);
315 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316 }
317 
318 static int sh_cmt_enable(struct sh_cmt_channel *ch)
319 {
320 	int k, ret;
321 
322 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
323 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
324 
325 	/* enable clock */
326 	ret = clk_enable(ch->cmt->clk);
327 	if (ret) {
328 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329 			ch->index);
330 		goto err0;
331 	}
332 
333 	/* make sure channel is disabled */
334 	sh_cmt_start_stop_ch(ch, 0);
335 
336 	/* configure channel, periodic mode and maximum timeout */
337 	if (ch->cmt->info->width == 16) {
338 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339 				   SH_CMT16_CMCSR_CKS512);
340 	} else {
341 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342 				   SH_CMT32_CMCSR_CMTOUT_IE |
343 				   SH_CMT32_CMCSR_CMR_IRQ |
344 				   SH_CMT32_CMCSR_CKS_RCLK8);
345 	}
346 
347 	sh_cmt_write_cmcor(ch, 0xffffffff);
348 	sh_cmt_write_cmcnt(ch, 0);
349 
350 	/*
351 	 * According to the sh73a0 user's manual, as CMCNT can be operated
352 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
353 	 * modifying CMCNT register; two RCLK cycles are necessary before
354 	 * this register is either read or any modification of the value
355 	 * it holds is reflected in the LSI's actual operation.
356 	 *
357 	 * While at it, we're supposed to clear out the CMCNT as of this
358 	 * moment, so make sure it's processed properly here.  This will
359 	 * take RCLKx2 at maximum.
360 	 */
361 	for (k = 0; k < 100; k++) {
362 		if (!sh_cmt_read_cmcnt(ch))
363 			break;
364 		udelay(1);
365 	}
366 
367 	if (sh_cmt_read_cmcnt(ch)) {
368 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369 			ch->index);
370 		ret = -ETIMEDOUT;
371 		goto err1;
372 	}
373 
374 	/* enable channel */
375 	sh_cmt_start_stop_ch(ch, 1);
376 	return 0;
377  err1:
378 	/* stop clock */
379 	clk_disable(ch->cmt->clk);
380 
381  err0:
382 	return ret;
383 }
384 
385 static void sh_cmt_disable(struct sh_cmt_channel *ch)
386 {
387 	/* disable channel */
388 	sh_cmt_start_stop_ch(ch, 0);
389 
390 	/* disable interrupts in CMT block */
391 	sh_cmt_write_cmcsr(ch, 0);
392 
393 	/* stop clock */
394 	clk_disable(ch->cmt->clk);
395 
396 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397 	pm_runtime_put(&ch->cmt->pdev->dev);
398 }
399 
400 /* private flags */
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
406 
407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408 					      int absolute)
409 {
410 	u32 value = ch->next_match_value;
411 	u32 new_match;
412 	u32 delay = 0;
413 	u32 now = 0;
414 	u32 has_wrapped;
415 
416 	now = sh_cmt_get_counter(ch, &has_wrapped);
417 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418 
419 	if (has_wrapped) {
420 		/* we're competing with the interrupt handler.
421 		 *  -> let the interrupt handler reprogram the timer.
422 		 *  -> interrupt number two handles the event.
423 		 */
424 		ch->flags |= FLAG_SKIPEVENT;
425 		return;
426 	}
427 
428 	if (absolute)
429 		now = 0;
430 
431 	do {
432 		/* reprogram the timer hardware,
433 		 * but don't save the new match value yet.
434 		 */
435 		new_match = now + value + delay;
436 		if (new_match > ch->max_match_value)
437 			new_match = ch->max_match_value;
438 
439 		sh_cmt_write_cmcor(ch, new_match);
440 
441 		now = sh_cmt_get_counter(ch, &has_wrapped);
442 		if (has_wrapped && (new_match > ch->match_value)) {
443 			/* we are changing to a greater match value,
444 			 * so this wrap must be caused by the counter
445 			 * matching the old value.
446 			 * -> first interrupt reprograms the timer.
447 			 * -> interrupt number two handles the event.
448 			 */
449 			ch->flags |= FLAG_SKIPEVENT;
450 			break;
451 		}
452 
453 		if (has_wrapped) {
454 			/* we are changing to a smaller match value,
455 			 * so the wrap must be caused by the counter
456 			 * matching the new value.
457 			 * -> save programmed match value.
458 			 * -> let isr handle the event.
459 			 */
460 			ch->match_value = new_match;
461 			break;
462 		}
463 
464 		/* be safe: verify hardware settings */
465 		if (now < new_match) {
466 			/* timer value is below match value, all good.
467 			 * this makes sure we won't miss any match events.
468 			 * -> save programmed match value.
469 			 * -> let isr handle the event.
470 			 */
471 			ch->match_value = new_match;
472 			break;
473 		}
474 
475 		/* the counter has reached a value greater
476 		 * than our new match value. and since the
477 		 * has_wrapped flag isn't set we must have
478 		 * programmed a too close event.
479 		 * -> increase delay and retry.
480 		 */
481 		if (delay)
482 			delay <<= 1;
483 		else
484 			delay = 1;
485 
486 		if (!delay)
487 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488 				 ch->index);
489 
490 	} while (delay);
491 }
492 
493 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494 {
495 	if (delta > ch->max_match_value)
496 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497 			 ch->index);
498 
499 	ch->next_match_value = delta;
500 	sh_cmt_clock_event_program_verify(ch, 0);
501 }
502 
503 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504 {
505 	unsigned long flags;
506 
507 	raw_spin_lock_irqsave(&ch->lock, flags);
508 	__sh_cmt_set_next(ch, delta);
509 	raw_spin_unlock_irqrestore(&ch->lock, flags);
510 }
511 
512 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513 {
514 	struct sh_cmt_channel *ch = dev_id;
515 
516 	/* clear flags */
517 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518 			   ch->cmt->info->clear_bits);
519 
520 	/* update clock source counter to begin with if enabled
521 	 * the wrap flag should be cleared by the timer specific
522 	 * isr before we end up here.
523 	 */
524 	if (ch->flags & FLAG_CLOCKSOURCE)
525 		ch->total_cycles += ch->match_value + 1;
526 
527 	if (!(ch->flags & FLAG_REPROGRAM))
528 		ch->next_match_value = ch->max_match_value;
529 
530 	ch->flags |= FLAG_IRQCONTEXT;
531 
532 	if (ch->flags & FLAG_CLOCKEVENT) {
533 		if (!(ch->flags & FLAG_SKIPEVENT)) {
534 			if (clockevent_state_oneshot(&ch->ced)) {
535 				ch->next_match_value = ch->max_match_value;
536 				ch->flags |= FLAG_REPROGRAM;
537 			}
538 
539 			ch->ced.event_handler(&ch->ced);
540 		}
541 	}
542 
543 	ch->flags &= ~FLAG_SKIPEVENT;
544 
545 	if (ch->flags & FLAG_REPROGRAM) {
546 		ch->flags &= ~FLAG_REPROGRAM;
547 		sh_cmt_clock_event_program_verify(ch, 1);
548 
549 		if (ch->flags & FLAG_CLOCKEVENT)
550 			if ((clockevent_state_shutdown(&ch->ced))
551 			    || (ch->match_value == ch->next_match_value))
552 				ch->flags &= ~FLAG_REPROGRAM;
553 	}
554 
555 	ch->flags &= ~FLAG_IRQCONTEXT;
556 
557 	return IRQ_HANDLED;
558 }
559 
560 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561 {
562 	int ret = 0;
563 	unsigned long flags;
564 
565 	raw_spin_lock_irqsave(&ch->lock, flags);
566 
567 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568 		ret = sh_cmt_enable(ch);
569 
570 	if (ret)
571 		goto out;
572 	ch->flags |= flag;
573 
574 	/* setup timeout if no clockevent */
575 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
576 		__sh_cmt_set_next(ch, ch->max_match_value);
577  out:
578 	raw_spin_unlock_irqrestore(&ch->lock, flags);
579 
580 	return ret;
581 }
582 
583 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
584 {
585 	unsigned long flags;
586 	unsigned long f;
587 
588 	raw_spin_lock_irqsave(&ch->lock, flags);
589 
590 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
591 	ch->flags &= ~flag;
592 
593 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
594 		sh_cmt_disable(ch);
595 
596 	/* adjust the timeout to maximum if only clocksource left */
597 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
598 		__sh_cmt_set_next(ch, ch->max_match_value);
599 
600 	raw_spin_unlock_irqrestore(&ch->lock, flags);
601 }
602 
603 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
604 {
605 	return container_of(cs, struct sh_cmt_channel, cs);
606 }
607 
608 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
609 {
610 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
611 	unsigned long flags;
612 	u32 has_wrapped;
613 	u64 value;
614 	u32 raw;
615 
616 	raw_spin_lock_irqsave(&ch->lock, flags);
617 	value = ch->total_cycles;
618 	raw = sh_cmt_get_counter(ch, &has_wrapped);
619 
620 	if (unlikely(has_wrapped))
621 		raw += ch->match_value + 1;
622 	raw_spin_unlock_irqrestore(&ch->lock, flags);
623 
624 	return value + raw;
625 }
626 
627 static int sh_cmt_clocksource_enable(struct clocksource *cs)
628 {
629 	int ret;
630 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
631 
632 	WARN_ON(ch->cs_enabled);
633 
634 	ch->total_cycles = 0;
635 
636 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
637 	if (!ret)
638 		ch->cs_enabled = true;
639 
640 	return ret;
641 }
642 
643 static void sh_cmt_clocksource_disable(struct clocksource *cs)
644 {
645 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
646 
647 	WARN_ON(!ch->cs_enabled);
648 
649 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
650 	ch->cs_enabled = false;
651 }
652 
653 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
654 {
655 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656 
657 	if (!ch->cs_enabled)
658 		return;
659 
660 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
661 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
662 }
663 
664 static void sh_cmt_clocksource_resume(struct clocksource *cs)
665 {
666 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
667 
668 	if (!ch->cs_enabled)
669 		return;
670 
671 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
672 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
673 }
674 
675 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
676 				       const char *name)
677 {
678 	struct clocksource *cs = &ch->cs;
679 
680 	cs->name = name;
681 	cs->rating = 125;
682 	cs->read = sh_cmt_clocksource_read;
683 	cs->enable = sh_cmt_clocksource_enable;
684 	cs->disable = sh_cmt_clocksource_disable;
685 	cs->suspend = sh_cmt_clocksource_suspend;
686 	cs->resume = sh_cmt_clocksource_resume;
687 	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
688 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
689 
690 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
691 		 ch->index);
692 
693 	clocksource_register_hz(cs, ch->cmt->rate);
694 	return 0;
695 }
696 
697 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
698 {
699 	return container_of(ced, struct sh_cmt_channel, ced);
700 }
701 
702 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
703 {
704 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
705 
706 	if (periodic)
707 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
708 	else
709 		sh_cmt_set_next(ch, ch->max_match_value);
710 }
711 
712 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
713 {
714 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
715 
716 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
717 	return 0;
718 }
719 
720 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
721 					int periodic)
722 {
723 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
724 
725 	/* deal with old setting first */
726 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
727 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
728 
729 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
730 		 ch->index, periodic ? "periodic" : "oneshot");
731 	sh_cmt_clock_event_start(ch, periodic);
732 	return 0;
733 }
734 
735 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
736 {
737 	return sh_cmt_clock_event_set_state(ced, 0);
738 }
739 
740 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
741 {
742 	return sh_cmt_clock_event_set_state(ced, 1);
743 }
744 
745 static int sh_cmt_clock_event_next(unsigned long delta,
746 				   struct clock_event_device *ced)
747 {
748 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
749 
750 	BUG_ON(!clockevent_state_oneshot(ced));
751 	if (likely(ch->flags & FLAG_IRQCONTEXT))
752 		ch->next_match_value = delta - 1;
753 	else
754 		sh_cmt_set_next(ch, delta - 1);
755 
756 	return 0;
757 }
758 
759 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
760 {
761 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762 
763 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
764 	clk_unprepare(ch->cmt->clk);
765 }
766 
767 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
768 {
769 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
770 
771 	clk_prepare(ch->cmt->clk);
772 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
773 }
774 
775 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
776 				      const char *name)
777 {
778 	struct clock_event_device *ced = &ch->ced;
779 	int irq;
780 	int ret;
781 
782 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
783 	if (irq < 0)
784 		return irq;
785 
786 	ret = request_irq(irq, sh_cmt_interrupt,
787 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
788 			  dev_name(&ch->cmt->pdev->dev), ch);
789 	if (ret) {
790 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
791 			ch->index, irq);
792 		return ret;
793 	}
794 
795 	ced->name = name;
796 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
797 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
798 	ced->rating = 125;
799 	ced->cpumask = cpu_possible_mask;
800 	ced->set_next_event = sh_cmt_clock_event_next;
801 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
802 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
803 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
804 	ced->suspend = sh_cmt_clock_event_suspend;
805 	ced->resume = sh_cmt_clock_event_resume;
806 
807 	/* TODO: calculate good shift from rate and counter bit width */
808 	ced->shift = 32;
809 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
810 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
811 	ced->max_delta_ticks = ch->max_match_value;
812 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
813 	ced->min_delta_ticks = 0x1f;
814 
815 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
816 		 ch->index);
817 	clockevents_register_device(ced);
818 
819 	return 0;
820 }
821 
822 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
823 			   bool clockevent, bool clocksource)
824 {
825 	int ret;
826 
827 	if (clockevent) {
828 		ch->cmt->has_clockevent = true;
829 		ret = sh_cmt_register_clockevent(ch, name);
830 		if (ret < 0)
831 			return ret;
832 	}
833 
834 	if (clocksource) {
835 		ch->cmt->has_clocksource = true;
836 		sh_cmt_register_clocksource(ch, name);
837 	}
838 
839 	return 0;
840 }
841 
842 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
843 				unsigned int hwidx, bool clockevent,
844 				bool clocksource, struct sh_cmt_device *cmt)
845 {
846 	int ret;
847 
848 	/* Skip unused channels. */
849 	if (!clockevent && !clocksource)
850 		return 0;
851 
852 	ch->cmt = cmt;
853 	ch->index = index;
854 	ch->hwidx = hwidx;
855 	ch->timer_bit = hwidx;
856 
857 	/*
858 	 * Compute the address of the channel control register block. For the
859 	 * timers with a per-channel start/stop register, compute its address
860 	 * as well.
861 	 */
862 	switch (cmt->info->model) {
863 	case SH_CMT_16BIT:
864 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
865 		break;
866 	case SH_CMT_32BIT:
867 	case SH_CMT_48BIT:
868 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
869 		break;
870 	case SH_CMT0_RCAR_GEN2:
871 	case SH_CMT1_RCAR_GEN2:
872 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
873 		ch->ioctrl = ch->iostart + 0x10;
874 		ch->timer_bit = 0;
875 		break;
876 	}
877 
878 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
879 		ch->max_match_value = ~0;
880 	else
881 		ch->max_match_value = (1 << cmt->info->width) - 1;
882 
883 	ch->match_value = ch->max_match_value;
884 	raw_spin_lock_init(&ch->lock);
885 
886 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
887 			      clockevent, clocksource);
888 	if (ret) {
889 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
890 			ch->index);
891 		return ret;
892 	}
893 	ch->cs_enabled = false;
894 
895 	return 0;
896 }
897 
898 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
899 {
900 	struct resource *mem;
901 
902 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
903 	if (!mem) {
904 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
905 		return -ENXIO;
906 	}
907 
908 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
909 	if (cmt->mapbase == NULL) {
910 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
911 		return -ENXIO;
912 	}
913 
914 	return 0;
915 }
916 
917 static const struct platform_device_id sh_cmt_id_table[] = {
918 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
919 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
920 	{ }
921 };
922 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
923 
924 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
925 	{
926 		/* deprecated, preserved for backward compatibility */
927 		.compatible = "renesas,cmt-48",
928 		.data = &sh_cmt_info[SH_CMT_48BIT]
929 	},
930 	{
931 		/* deprecated, preserved for backward compatibility */
932 		.compatible = "renesas,cmt-48-gen2",
933 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
934 	},
935 	{
936 		.compatible = "renesas,r8a7740-cmt1",
937 		.data = &sh_cmt_info[SH_CMT_48BIT]
938 	},
939 	{
940 		.compatible = "renesas,sh73a0-cmt1",
941 		.data = &sh_cmt_info[SH_CMT_48BIT]
942 	},
943 	{
944 		.compatible = "renesas,rcar-gen2-cmt0",
945 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
946 	},
947 	{
948 		.compatible = "renesas,rcar-gen2-cmt1",
949 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
950 	},
951 	{
952 		.compatible = "renesas,rcar-gen3-cmt0",
953 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
954 	},
955 	{
956 		.compatible = "renesas,rcar-gen3-cmt1",
957 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
958 	},
959 	{ }
960 };
961 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
962 
963 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
964 {
965 	unsigned int mask;
966 	unsigned int i;
967 	int ret;
968 
969 	cmt->pdev = pdev;
970 	raw_spin_lock_init(&cmt->lock);
971 
972 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
973 		cmt->info = of_device_get_match_data(&pdev->dev);
974 		cmt->hw_channels = cmt->info->channels_mask;
975 	} else if (pdev->dev.platform_data) {
976 		struct sh_timer_config *cfg = pdev->dev.platform_data;
977 		const struct platform_device_id *id = pdev->id_entry;
978 
979 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
980 		cmt->hw_channels = cfg->channels_mask;
981 	} else {
982 		dev_err(&cmt->pdev->dev, "missing platform data\n");
983 		return -ENXIO;
984 	}
985 
986 	/* Get hold of clock. */
987 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
988 	if (IS_ERR(cmt->clk)) {
989 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
990 		return PTR_ERR(cmt->clk);
991 	}
992 
993 	ret = clk_prepare(cmt->clk);
994 	if (ret < 0)
995 		goto err_clk_put;
996 
997 	/* Determine clock rate. */
998 	ret = clk_enable(cmt->clk);
999 	if (ret < 0)
1000 		goto err_clk_unprepare;
1001 
1002 	if (cmt->info->width == 16)
1003 		cmt->rate = clk_get_rate(cmt->clk) / 512;
1004 	else
1005 		cmt->rate = clk_get_rate(cmt->clk) / 8;
1006 
1007 	clk_disable(cmt->clk);
1008 
1009 	/* Map the memory resource(s). */
1010 	ret = sh_cmt_map_memory(cmt);
1011 	if (ret < 0)
1012 		goto err_clk_unprepare;
1013 
1014 	/* Allocate and setup the channels. */
1015 	cmt->num_channels = hweight8(cmt->hw_channels);
1016 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017 				GFP_KERNEL);
1018 	if (cmt->channels == NULL) {
1019 		ret = -ENOMEM;
1020 		goto err_unmap;
1021 	}
1022 
1023 	/*
1024 	 * Use the first channel as a clock event device and the second channel
1025 	 * as a clock source. If only one channel is available use it for both.
1026 	 */
1027 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028 		unsigned int hwidx = ffs(mask) - 1;
1029 		bool clocksource = i == 1 || cmt->num_channels == 1;
1030 		bool clockevent = i == 0;
1031 
1032 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033 					   clockevent, clocksource, cmt);
1034 		if (ret < 0)
1035 			goto err_unmap;
1036 
1037 		mask &= ~(1 << hwidx);
1038 	}
1039 
1040 	platform_set_drvdata(pdev, cmt);
1041 
1042 	return 0;
1043 
1044 err_unmap:
1045 	kfree(cmt->channels);
1046 	iounmap(cmt->mapbase);
1047 err_clk_unprepare:
1048 	clk_unprepare(cmt->clk);
1049 err_clk_put:
1050 	clk_put(cmt->clk);
1051 	return ret;
1052 }
1053 
1054 static int sh_cmt_probe(struct platform_device *pdev)
1055 {
1056 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1057 	int ret;
1058 
1059 	if (!is_sh_early_platform_device(pdev)) {
1060 		pm_runtime_set_active(&pdev->dev);
1061 		pm_runtime_enable(&pdev->dev);
1062 	}
1063 
1064 	if (cmt) {
1065 		dev_info(&pdev->dev, "kept as earlytimer\n");
1066 		goto out;
1067 	}
1068 
1069 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070 	if (cmt == NULL)
1071 		return -ENOMEM;
1072 
1073 	ret = sh_cmt_setup(cmt, pdev);
1074 	if (ret) {
1075 		kfree(cmt);
1076 		pm_runtime_idle(&pdev->dev);
1077 		return ret;
1078 	}
1079 	if (is_sh_early_platform_device(pdev))
1080 		return 0;
1081 
1082  out:
1083 	if (cmt->has_clockevent || cmt->has_clocksource)
1084 		pm_runtime_irq_safe(&pdev->dev);
1085 	else
1086 		pm_runtime_idle(&pdev->dev);
1087 
1088 	return 0;
1089 }
1090 
1091 static int sh_cmt_remove(struct platform_device *pdev)
1092 {
1093 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1094 }
1095 
1096 static struct platform_driver sh_cmt_device_driver = {
1097 	.probe		= sh_cmt_probe,
1098 	.remove		= sh_cmt_remove,
1099 	.driver		= {
1100 		.name	= "sh_cmt",
1101 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1102 	},
1103 	.id_table	= sh_cmt_id_table,
1104 };
1105 
1106 static int __init sh_cmt_init(void)
1107 {
1108 	return platform_driver_register(&sh_cmt_device_driver);
1109 }
1110 
1111 static void __exit sh_cmt_exit(void)
1112 {
1113 	platform_driver_unregister(&sh_cmt_device_driver);
1114 }
1115 
1116 #ifdef CONFIG_SUPERH
1117 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118 #endif
1119 
1120 subsys_initcall(sh_cmt_init);
1121 module_exit(sh_cmt_exit);
1122 
1123 MODULE_AUTHOR("Magnus Damm");
1124 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125 MODULE_LICENSE("GPL v2");
1126