xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision e23feb16)
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/io.h>
26 #include <linux/clk.h>
27 #include <linux/irq.h>
28 #include <linux/err.h>
29 #include <linux/delay.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36 #include <linux/pm_runtime.h>
37 
38 struct sh_cmt_priv {
39 	void __iomem *mapbase;
40 	void __iomem *mapbase_str;
41 	struct clk *clk;
42 	unsigned long width; /* 16 or 32 bit version of hardware block */
43 	unsigned long overflow_bit;
44 	unsigned long clear_bits;
45 	struct irqaction irqaction;
46 	struct platform_device *pdev;
47 
48 	unsigned long flags;
49 	unsigned long match_value;
50 	unsigned long next_match_value;
51 	unsigned long max_match_value;
52 	unsigned long rate;
53 	raw_spinlock_t lock;
54 	struct clock_event_device ced;
55 	struct clocksource cs;
56 	unsigned long total_cycles;
57 	bool cs_enabled;
58 
59 	/* callbacks for CMSTR and CMCSR access */
60 	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
61 	void (*write_control)(void __iomem *base, unsigned long offs,
62 			      unsigned long value);
63 
64 	/* callbacks for CMCNT and CMCOR access */
65 	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
66 	void (*write_count)(void __iomem *base, unsigned long offs,
67 			    unsigned long value);
68 };
69 
70 /* Examples of supported CMT timer register layouts and I/O access widths:
71  *
72  * "16-bit counter and 16-bit control" as found on sh7263:
73  * CMSTR 0xfffec000 16-bit
74  * CMCSR 0xfffec002 16-bit
75  * CMCNT 0xfffec004 16-bit
76  * CMCOR 0xfffec006 16-bit
77  *
78  * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
79  * CMSTR 0xffca0000 16-bit
80  * CMCSR 0xffca0060 16-bit
81  * CMCNT 0xffca0064 32-bit
82  * CMCOR 0xffca0068 32-bit
83  *
84  * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
85  * CMSTR 0xffca0500 32-bit
86  * CMCSR 0xffca0510 32-bit
87  * CMCNT 0xffca0514 32-bit
88  * CMCOR 0xffca0518 32-bit
89  */
90 
91 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
92 {
93 	return ioread16(base + (offs << 1));
94 }
95 
96 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
97 {
98 	return ioread32(base + (offs << 2));
99 }
100 
101 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
102 			   unsigned long value)
103 {
104 	iowrite16(value, base + (offs << 1));
105 }
106 
107 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
108 			   unsigned long value)
109 {
110 	iowrite32(value, base + (offs << 2));
111 }
112 
113 #define CMCSR 0 /* channel register */
114 #define CMCNT 1 /* channel register */
115 #define CMCOR 2 /* channel register */
116 
117 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
118 {
119 	return p->read_control(p->mapbase_str, 0);
120 }
121 
122 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
123 {
124 	return p->read_control(p->mapbase, CMCSR);
125 }
126 
127 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
128 {
129 	return p->read_count(p->mapbase, CMCNT);
130 }
131 
132 static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
133 				      unsigned long value)
134 {
135 	p->write_control(p->mapbase_str, 0, value);
136 }
137 
138 static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
139 				      unsigned long value)
140 {
141 	p->write_control(p->mapbase, CMCSR, value);
142 }
143 
144 static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
145 				      unsigned long value)
146 {
147 	p->write_count(p->mapbase, CMCNT, value);
148 }
149 
150 static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
151 				      unsigned long value)
152 {
153 	p->write_count(p->mapbase, CMCOR, value);
154 }
155 
156 static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
157 					int *has_wrapped)
158 {
159 	unsigned long v1, v2, v3;
160 	int o1, o2;
161 
162 	o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
163 
164 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
165 	do {
166 		o2 = o1;
167 		v1 = sh_cmt_read_cmcnt(p);
168 		v2 = sh_cmt_read_cmcnt(p);
169 		v3 = sh_cmt_read_cmcnt(p);
170 		o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
171 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
172 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
173 
174 	*has_wrapped = o1;
175 	return v2;
176 }
177 
178 static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
179 
180 static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
181 {
182 	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
183 	unsigned long flags, value;
184 
185 	/* start stop register shared by multiple timer channels */
186 	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
187 	value = sh_cmt_read_cmstr(p);
188 
189 	if (start)
190 		value |= 1 << cfg->timer_bit;
191 	else
192 		value &= ~(1 << cfg->timer_bit);
193 
194 	sh_cmt_write_cmstr(p, value);
195 	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
196 }
197 
198 static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
199 {
200 	int k, ret;
201 
202 	pm_runtime_get_sync(&p->pdev->dev);
203 	dev_pm_syscore_device(&p->pdev->dev, true);
204 
205 	/* enable clock */
206 	ret = clk_enable(p->clk);
207 	if (ret) {
208 		dev_err(&p->pdev->dev, "cannot enable clock\n");
209 		goto err0;
210 	}
211 
212 	/* make sure channel is disabled */
213 	sh_cmt_start_stop_ch(p, 0);
214 
215 	/* configure channel, periodic mode and maximum timeout */
216 	if (p->width == 16) {
217 		*rate = clk_get_rate(p->clk) / 512;
218 		sh_cmt_write_cmcsr(p, 0x43);
219 	} else {
220 		*rate = clk_get_rate(p->clk) / 8;
221 		sh_cmt_write_cmcsr(p, 0x01a4);
222 	}
223 
224 	sh_cmt_write_cmcor(p, 0xffffffff);
225 	sh_cmt_write_cmcnt(p, 0);
226 
227 	/*
228 	 * According to the sh73a0 user's manual, as CMCNT can be operated
229 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
230 	 * modifying CMCNT register; two RCLK cycles are necessary before
231 	 * this register is either read or any modification of the value
232 	 * it holds is reflected in the LSI's actual operation.
233 	 *
234 	 * While at it, we're supposed to clear out the CMCNT as of this
235 	 * moment, so make sure it's processed properly here.  This will
236 	 * take RCLKx2 at maximum.
237 	 */
238 	for (k = 0; k < 100; k++) {
239 		if (!sh_cmt_read_cmcnt(p))
240 			break;
241 		udelay(1);
242 	}
243 
244 	if (sh_cmt_read_cmcnt(p)) {
245 		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
246 		ret = -ETIMEDOUT;
247 		goto err1;
248 	}
249 
250 	/* enable channel */
251 	sh_cmt_start_stop_ch(p, 1);
252 	return 0;
253  err1:
254 	/* stop clock */
255 	clk_disable(p->clk);
256 
257  err0:
258 	return ret;
259 }
260 
261 static void sh_cmt_disable(struct sh_cmt_priv *p)
262 {
263 	/* disable channel */
264 	sh_cmt_start_stop_ch(p, 0);
265 
266 	/* disable interrupts in CMT block */
267 	sh_cmt_write_cmcsr(p, 0);
268 
269 	/* stop clock */
270 	clk_disable(p->clk);
271 
272 	dev_pm_syscore_device(&p->pdev->dev, false);
273 	pm_runtime_put(&p->pdev->dev);
274 }
275 
276 /* private flags */
277 #define FLAG_CLOCKEVENT (1 << 0)
278 #define FLAG_CLOCKSOURCE (1 << 1)
279 #define FLAG_REPROGRAM (1 << 2)
280 #define FLAG_SKIPEVENT (1 << 3)
281 #define FLAG_IRQCONTEXT (1 << 4)
282 
283 static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
284 					      int absolute)
285 {
286 	unsigned long new_match;
287 	unsigned long value = p->next_match_value;
288 	unsigned long delay = 0;
289 	unsigned long now = 0;
290 	int has_wrapped;
291 
292 	now = sh_cmt_get_counter(p, &has_wrapped);
293 	p->flags |= FLAG_REPROGRAM; /* force reprogram */
294 
295 	if (has_wrapped) {
296 		/* we're competing with the interrupt handler.
297 		 *  -> let the interrupt handler reprogram the timer.
298 		 *  -> interrupt number two handles the event.
299 		 */
300 		p->flags |= FLAG_SKIPEVENT;
301 		return;
302 	}
303 
304 	if (absolute)
305 		now = 0;
306 
307 	do {
308 		/* reprogram the timer hardware,
309 		 * but don't save the new match value yet.
310 		 */
311 		new_match = now + value + delay;
312 		if (new_match > p->max_match_value)
313 			new_match = p->max_match_value;
314 
315 		sh_cmt_write_cmcor(p, new_match);
316 
317 		now = sh_cmt_get_counter(p, &has_wrapped);
318 		if (has_wrapped && (new_match > p->match_value)) {
319 			/* we are changing to a greater match value,
320 			 * so this wrap must be caused by the counter
321 			 * matching the old value.
322 			 * -> first interrupt reprograms the timer.
323 			 * -> interrupt number two handles the event.
324 			 */
325 			p->flags |= FLAG_SKIPEVENT;
326 			break;
327 		}
328 
329 		if (has_wrapped) {
330 			/* we are changing to a smaller match value,
331 			 * so the wrap must be caused by the counter
332 			 * matching the new value.
333 			 * -> save programmed match value.
334 			 * -> let isr handle the event.
335 			 */
336 			p->match_value = new_match;
337 			break;
338 		}
339 
340 		/* be safe: verify hardware settings */
341 		if (now < new_match) {
342 			/* timer value is below match value, all good.
343 			 * this makes sure we won't miss any match events.
344 			 * -> save programmed match value.
345 			 * -> let isr handle the event.
346 			 */
347 			p->match_value = new_match;
348 			break;
349 		}
350 
351 		/* the counter has reached a value greater
352 		 * than our new match value. and since the
353 		 * has_wrapped flag isn't set we must have
354 		 * programmed a too close event.
355 		 * -> increase delay and retry.
356 		 */
357 		if (delay)
358 			delay <<= 1;
359 		else
360 			delay = 1;
361 
362 		if (!delay)
363 			dev_warn(&p->pdev->dev, "too long delay\n");
364 
365 	} while (delay);
366 }
367 
368 static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
369 {
370 	if (delta > p->max_match_value)
371 		dev_warn(&p->pdev->dev, "delta out of range\n");
372 
373 	p->next_match_value = delta;
374 	sh_cmt_clock_event_program_verify(p, 0);
375 }
376 
377 static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
378 {
379 	unsigned long flags;
380 
381 	raw_spin_lock_irqsave(&p->lock, flags);
382 	__sh_cmt_set_next(p, delta);
383 	raw_spin_unlock_irqrestore(&p->lock, flags);
384 }
385 
386 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
387 {
388 	struct sh_cmt_priv *p = dev_id;
389 
390 	/* clear flags */
391 	sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
392 
393 	/* update clock source counter to begin with if enabled
394 	 * the wrap flag should be cleared by the timer specific
395 	 * isr before we end up here.
396 	 */
397 	if (p->flags & FLAG_CLOCKSOURCE)
398 		p->total_cycles += p->match_value + 1;
399 
400 	if (!(p->flags & FLAG_REPROGRAM))
401 		p->next_match_value = p->max_match_value;
402 
403 	p->flags |= FLAG_IRQCONTEXT;
404 
405 	if (p->flags & FLAG_CLOCKEVENT) {
406 		if (!(p->flags & FLAG_SKIPEVENT)) {
407 			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
408 				p->next_match_value = p->max_match_value;
409 				p->flags |= FLAG_REPROGRAM;
410 			}
411 
412 			p->ced.event_handler(&p->ced);
413 		}
414 	}
415 
416 	p->flags &= ~FLAG_SKIPEVENT;
417 
418 	if (p->flags & FLAG_REPROGRAM) {
419 		p->flags &= ~FLAG_REPROGRAM;
420 		sh_cmt_clock_event_program_verify(p, 1);
421 
422 		if (p->flags & FLAG_CLOCKEVENT)
423 			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
424 			    || (p->match_value == p->next_match_value))
425 				p->flags &= ~FLAG_REPROGRAM;
426 	}
427 
428 	p->flags &= ~FLAG_IRQCONTEXT;
429 
430 	return IRQ_HANDLED;
431 }
432 
433 static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
434 {
435 	int ret = 0;
436 	unsigned long flags;
437 
438 	raw_spin_lock_irqsave(&p->lock, flags);
439 
440 	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
441 		ret = sh_cmt_enable(p, &p->rate);
442 
443 	if (ret)
444 		goto out;
445 	p->flags |= flag;
446 
447 	/* setup timeout if no clockevent */
448 	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
449 		__sh_cmt_set_next(p, p->max_match_value);
450  out:
451 	raw_spin_unlock_irqrestore(&p->lock, flags);
452 
453 	return ret;
454 }
455 
456 static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
457 {
458 	unsigned long flags;
459 	unsigned long f;
460 
461 	raw_spin_lock_irqsave(&p->lock, flags);
462 
463 	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
464 	p->flags &= ~flag;
465 
466 	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
467 		sh_cmt_disable(p);
468 
469 	/* adjust the timeout to maximum if only clocksource left */
470 	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
471 		__sh_cmt_set_next(p, p->max_match_value);
472 
473 	raw_spin_unlock_irqrestore(&p->lock, flags);
474 }
475 
476 static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
477 {
478 	return container_of(cs, struct sh_cmt_priv, cs);
479 }
480 
481 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
482 {
483 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
484 	unsigned long flags, raw;
485 	unsigned long value;
486 	int has_wrapped;
487 
488 	raw_spin_lock_irqsave(&p->lock, flags);
489 	value = p->total_cycles;
490 	raw = sh_cmt_get_counter(p, &has_wrapped);
491 
492 	if (unlikely(has_wrapped))
493 		raw += p->match_value + 1;
494 	raw_spin_unlock_irqrestore(&p->lock, flags);
495 
496 	return value + raw;
497 }
498 
499 static int sh_cmt_clocksource_enable(struct clocksource *cs)
500 {
501 	int ret;
502 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
503 
504 	WARN_ON(p->cs_enabled);
505 
506 	p->total_cycles = 0;
507 
508 	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
509 	if (!ret) {
510 		__clocksource_updatefreq_hz(cs, p->rate);
511 		p->cs_enabled = true;
512 	}
513 	return ret;
514 }
515 
516 static void sh_cmt_clocksource_disable(struct clocksource *cs)
517 {
518 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
519 
520 	WARN_ON(!p->cs_enabled);
521 
522 	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
523 	p->cs_enabled = false;
524 }
525 
526 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
527 {
528 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
529 
530 	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
531 	pm_genpd_syscore_poweroff(&p->pdev->dev);
532 }
533 
534 static void sh_cmt_clocksource_resume(struct clocksource *cs)
535 {
536 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
537 
538 	pm_genpd_syscore_poweron(&p->pdev->dev);
539 	sh_cmt_start(p, FLAG_CLOCKSOURCE);
540 }
541 
542 static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
543 				       char *name, unsigned long rating)
544 {
545 	struct clocksource *cs = &p->cs;
546 
547 	cs->name = name;
548 	cs->rating = rating;
549 	cs->read = sh_cmt_clocksource_read;
550 	cs->enable = sh_cmt_clocksource_enable;
551 	cs->disable = sh_cmt_clocksource_disable;
552 	cs->suspend = sh_cmt_clocksource_suspend;
553 	cs->resume = sh_cmt_clocksource_resume;
554 	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
555 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
556 
557 	dev_info(&p->pdev->dev, "used as clock source\n");
558 
559 	/* Register with dummy 1 Hz value, gets updated in ->enable() */
560 	clocksource_register_hz(cs, 1);
561 	return 0;
562 }
563 
564 static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
565 {
566 	return container_of(ced, struct sh_cmt_priv, ced);
567 }
568 
569 static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
570 {
571 	struct clock_event_device *ced = &p->ced;
572 
573 	sh_cmt_start(p, FLAG_CLOCKEVENT);
574 
575 	/* TODO: calculate good shift from rate and counter bit width */
576 
577 	ced->shift = 32;
578 	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
579 	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
580 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
581 
582 	if (periodic)
583 		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
584 	else
585 		sh_cmt_set_next(p, p->max_match_value);
586 }
587 
588 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
589 				    struct clock_event_device *ced)
590 {
591 	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
592 
593 	/* deal with old setting first */
594 	switch (ced->mode) {
595 	case CLOCK_EVT_MODE_PERIODIC:
596 	case CLOCK_EVT_MODE_ONESHOT:
597 		sh_cmt_stop(p, FLAG_CLOCKEVENT);
598 		break;
599 	default:
600 		break;
601 	}
602 
603 	switch (mode) {
604 	case CLOCK_EVT_MODE_PERIODIC:
605 		dev_info(&p->pdev->dev, "used for periodic clock events\n");
606 		sh_cmt_clock_event_start(p, 1);
607 		break;
608 	case CLOCK_EVT_MODE_ONESHOT:
609 		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
610 		sh_cmt_clock_event_start(p, 0);
611 		break;
612 	case CLOCK_EVT_MODE_SHUTDOWN:
613 	case CLOCK_EVT_MODE_UNUSED:
614 		sh_cmt_stop(p, FLAG_CLOCKEVENT);
615 		break;
616 	default:
617 		break;
618 	}
619 }
620 
621 static int sh_cmt_clock_event_next(unsigned long delta,
622 				   struct clock_event_device *ced)
623 {
624 	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
625 
626 	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
627 	if (likely(p->flags & FLAG_IRQCONTEXT))
628 		p->next_match_value = delta - 1;
629 	else
630 		sh_cmt_set_next(p, delta - 1);
631 
632 	return 0;
633 }
634 
635 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
636 {
637 	pm_genpd_syscore_poweroff(&ced_to_sh_cmt(ced)->pdev->dev);
638 }
639 
640 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
641 {
642 	pm_genpd_syscore_poweron(&ced_to_sh_cmt(ced)->pdev->dev);
643 }
644 
645 static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
646 				       char *name, unsigned long rating)
647 {
648 	struct clock_event_device *ced = &p->ced;
649 
650 	memset(ced, 0, sizeof(*ced));
651 
652 	ced->name = name;
653 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
654 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
655 	ced->rating = rating;
656 	ced->cpumask = cpumask_of(0);
657 	ced->set_next_event = sh_cmt_clock_event_next;
658 	ced->set_mode = sh_cmt_clock_event_mode;
659 	ced->suspend = sh_cmt_clock_event_suspend;
660 	ced->resume = sh_cmt_clock_event_resume;
661 
662 	dev_info(&p->pdev->dev, "used for clock events\n");
663 	clockevents_register_device(ced);
664 }
665 
666 static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
667 			   unsigned long clockevent_rating,
668 			   unsigned long clocksource_rating)
669 {
670 	if (clockevent_rating)
671 		sh_cmt_register_clockevent(p, name, clockevent_rating);
672 
673 	if (clocksource_rating)
674 		sh_cmt_register_clocksource(p, name, clocksource_rating);
675 
676 	return 0;
677 }
678 
679 static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
680 {
681 	struct sh_timer_config *cfg = pdev->dev.platform_data;
682 	struct resource *res, *res2;
683 	int irq, ret;
684 	ret = -ENXIO;
685 
686 	memset(p, 0, sizeof(*p));
687 	p->pdev = pdev;
688 
689 	if (!cfg) {
690 		dev_err(&p->pdev->dev, "missing platform data\n");
691 		goto err0;
692 	}
693 
694 	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
695 	if (!res) {
696 		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
697 		goto err0;
698 	}
699 
700 	/* optional resource for the shared timer start/stop register */
701 	res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
702 
703 	irq = platform_get_irq(p->pdev, 0);
704 	if (irq < 0) {
705 		dev_err(&p->pdev->dev, "failed to get irq\n");
706 		goto err0;
707 	}
708 
709 	/* map memory, let mapbase point to our channel */
710 	p->mapbase = ioremap_nocache(res->start, resource_size(res));
711 	if (p->mapbase == NULL) {
712 		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
713 		goto err0;
714 	}
715 
716 	/* map second resource for CMSTR */
717 	p->mapbase_str = ioremap_nocache(res2 ? res2->start :
718 					 res->start - cfg->channel_offset,
719 					 res2 ? resource_size(res2) : 2);
720 	if (p->mapbase_str == NULL) {
721 		dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
722 		goto err1;
723 	}
724 
725 	/* request irq using setup_irq() (too early for request_irq()) */
726 	p->irqaction.name = dev_name(&p->pdev->dev);
727 	p->irqaction.handler = sh_cmt_interrupt;
728 	p->irqaction.dev_id = p;
729 	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
730 			     IRQF_IRQPOLL  | IRQF_NOBALANCING;
731 
732 	/* get hold of clock */
733 	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
734 	if (IS_ERR(p->clk)) {
735 		dev_err(&p->pdev->dev, "cannot get clock\n");
736 		ret = PTR_ERR(p->clk);
737 		goto err2;
738 	}
739 
740 	if (res2 && (resource_size(res2) == 4)) {
741 		/* assume both CMSTR and CMCSR to be 32-bit */
742 		p->read_control = sh_cmt_read32;
743 		p->write_control = sh_cmt_write32;
744 	} else {
745 		p->read_control = sh_cmt_read16;
746 		p->write_control = sh_cmt_write16;
747 	}
748 
749 	if (resource_size(res) == 6) {
750 		p->width = 16;
751 		p->read_count = sh_cmt_read16;
752 		p->write_count = sh_cmt_write16;
753 		p->overflow_bit = 0x80;
754 		p->clear_bits = ~0x80;
755 	} else {
756 		p->width = 32;
757 		p->read_count = sh_cmt_read32;
758 		p->write_count = sh_cmt_write32;
759 		p->overflow_bit = 0x8000;
760 		p->clear_bits = ~0xc000;
761 	}
762 
763 	if (p->width == (sizeof(p->max_match_value) * 8))
764 		p->max_match_value = ~0;
765 	else
766 		p->max_match_value = (1 << p->width) - 1;
767 
768 	p->match_value = p->max_match_value;
769 	raw_spin_lock_init(&p->lock);
770 
771 	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
772 			      cfg->clockevent_rating,
773 			      cfg->clocksource_rating);
774 	if (ret) {
775 		dev_err(&p->pdev->dev, "registration failed\n");
776 		goto err3;
777 	}
778 	p->cs_enabled = false;
779 
780 	ret = setup_irq(irq, &p->irqaction);
781 	if (ret) {
782 		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
783 		goto err3;
784 	}
785 
786 	platform_set_drvdata(pdev, p);
787 
788 	return 0;
789 err3:
790 	clk_put(p->clk);
791 err2:
792 	iounmap(p->mapbase_str);
793 err1:
794 	iounmap(p->mapbase);
795 err0:
796 	return ret;
797 }
798 
799 static int sh_cmt_probe(struct platform_device *pdev)
800 {
801 	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
802 	struct sh_timer_config *cfg = pdev->dev.platform_data;
803 	int ret;
804 
805 	if (!is_early_platform_device(pdev)) {
806 		pm_runtime_set_active(&pdev->dev);
807 		pm_runtime_enable(&pdev->dev);
808 	}
809 
810 	if (p) {
811 		dev_info(&pdev->dev, "kept as earlytimer\n");
812 		goto out;
813 	}
814 
815 	p = kmalloc(sizeof(*p), GFP_KERNEL);
816 	if (p == NULL) {
817 		dev_err(&pdev->dev, "failed to allocate driver data\n");
818 		return -ENOMEM;
819 	}
820 
821 	ret = sh_cmt_setup(p, pdev);
822 	if (ret) {
823 		kfree(p);
824 		pm_runtime_idle(&pdev->dev);
825 		return ret;
826 	}
827 	if (is_early_platform_device(pdev))
828 		return 0;
829 
830  out:
831 	if (cfg->clockevent_rating || cfg->clocksource_rating)
832 		pm_runtime_irq_safe(&pdev->dev);
833 	else
834 		pm_runtime_idle(&pdev->dev);
835 
836 	return 0;
837 }
838 
839 static int sh_cmt_remove(struct platform_device *pdev)
840 {
841 	return -EBUSY; /* cannot unregister clockevent and clocksource */
842 }
843 
844 static struct platform_driver sh_cmt_device_driver = {
845 	.probe		= sh_cmt_probe,
846 	.remove		= sh_cmt_remove,
847 	.driver		= {
848 		.name	= "sh_cmt",
849 	}
850 };
851 
852 static int __init sh_cmt_init(void)
853 {
854 	return platform_driver_register(&sh_cmt_device_driver);
855 }
856 
857 static void __exit sh_cmt_exit(void)
858 {
859 	platform_driver_unregister(&sh_cmt_device_driver);
860 }
861 
862 early_platform_init("earlytimer", &sh_cmt_device_driver);
863 subsys_initcall(sh_cmt_init);
864 module_exit(sh_cmt_exit);
865 
866 MODULE_AUTHOR("Magnus Damm");
867 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
868 MODULE_LICENSE("GPL v2");
869