xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision e109a01f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 	unsigned int reg_delay;
120 
121 	raw_spinlock_t lock; /* Protect the shared start/stop register */
122 
123 	struct sh_cmt_channel *channels;
124 	unsigned int num_channels;
125 	unsigned int hw_channels;
126 
127 	bool has_clockevent;
128 	bool has_clocksource;
129 };
130 
131 #define SH_CMT16_CMCSR_CMF		(1 << 7)
132 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
133 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
134 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
135 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
136 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
138 
139 #define SH_CMT32_CMCSR_CMF		(1 << 15)
140 #define SH_CMT32_CMCSR_OVF		(1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
142 #define SH_CMT32_CMCSR_STTF		(1 << 12)
143 #define SH_CMT32_CMCSR_STPF		(1 << 11)
144 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
145 #define SH_CMT32_CMCSR_CMS		(1 << 9)
146 #define SH_CMT32_CMCSR_CMM		(1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
158 
159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160 {
161 	return ioread16(base + (offs << 1));
162 }
163 
164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165 {
166 	return ioread32(base + (offs << 2));
167 }
168 
169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170 {
171 	iowrite16(value, base + (offs << 1));
172 }
173 
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175 {
176 	iowrite32(value, base + (offs << 2));
177 }
178 
179 static const struct sh_cmt_info sh_cmt_info[] = {
180 	[SH_CMT_16BIT] = {
181 		.model = SH_CMT_16BIT,
182 		.width = 16,
183 		.overflow_bit = SH_CMT16_CMCSR_CMF,
184 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
185 		.read_control = sh_cmt_read16,
186 		.write_control = sh_cmt_write16,
187 		.read_count = sh_cmt_read16,
188 		.write_count = sh_cmt_write16,
189 	},
190 	[SH_CMT_32BIT] = {
191 		.model = SH_CMT_32BIT,
192 		.width = 32,
193 		.overflow_bit = SH_CMT32_CMCSR_CMF,
194 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195 		.read_control = sh_cmt_read16,
196 		.write_control = sh_cmt_write16,
197 		.read_count = sh_cmt_read32,
198 		.write_count = sh_cmt_write32,
199 	},
200 	[SH_CMT_48BIT] = {
201 		.model = SH_CMT_48BIT,
202 		.channels_mask = 0x3f,
203 		.width = 32,
204 		.overflow_bit = SH_CMT32_CMCSR_CMF,
205 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 		.read_control = sh_cmt_read32,
207 		.write_control = sh_cmt_write32,
208 		.read_count = sh_cmt_read32,
209 		.write_count = sh_cmt_write32,
210 	},
211 	[SH_CMT0_RCAR_GEN2] = {
212 		.model = SH_CMT0_RCAR_GEN2,
213 		.channels_mask = 0x60,
214 		.width = 32,
215 		.overflow_bit = SH_CMT32_CMCSR_CMF,
216 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217 		.read_control = sh_cmt_read32,
218 		.write_control = sh_cmt_write32,
219 		.read_count = sh_cmt_read32,
220 		.write_count = sh_cmt_write32,
221 	},
222 	[SH_CMT1_RCAR_GEN2] = {
223 		.model = SH_CMT1_RCAR_GEN2,
224 		.channels_mask = 0xff,
225 		.width = 32,
226 		.overflow_bit = SH_CMT32_CMCSR_CMF,
227 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 		.read_control = sh_cmt_read32,
229 		.write_control = sh_cmt_write32,
230 		.read_count = sh_cmt_read32,
231 		.write_count = sh_cmt_write32,
232 	},
233 };
234 
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238 
239 #define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
240 
241 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242 {
243 	if (ch->iostart)
244 		return ch->cmt->info->read_control(ch->iostart, 0);
245 	else
246 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247 }
248 
249 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250 {
251 	u32 old_value = sh_cmt_read_cmstr(ch);
252 
253 	if (value != old_value) {
254 		if (ch->iostart) {
255 			ch->cmt->info->write_control(ch->iostart, 0, value);
256 			udelay(ch->cmt->reg_delay);
257 		} else {
258 			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259 			udelay(ch->cmt->reg_delay);
260 		}
261 	}
262 }
263 
264 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265 {
266 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267 }
268 
269 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270 {
271 	u32 old_value = sh_cmt_read_cmcsr(ch);
272 
273 	if (value != old_value) {
274 		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275 		udelay(ch->cmt->reg_delay);
276 	}
277 }
278 
279 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280 {
281 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282 }
283 
284 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285 {
286 	/* Tests showed that we need to wait 3 clocks here */
287 	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288 	u32 reg;
289 
290 	if (ch->cmt->info->model > SH_CMT_16BIT) {
291 		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292 						   !(reg & SH_CMT32_CMCSR_WRFLG),
293 						   1, cmcnt_delay, false, ch);
294 		if (ret < 0)
295 			return ret;
296 	}
297 
298 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299 	udelay(cmcnt_delay);
300 	return 0;
301 }
302 
303 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304 {
305 	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306 
307 	if (value != old_value) {
308 		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309 		udelay(ch->cmt->reg_delay);
310 	}
311 }
312 
313 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314 {
315 	u32 v1, v2, v3;
316 	u32 o1, o2;
317 
318 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319 
320 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
321 	do {
322 		o2 = o1;
323 		v1 = sh_cmt_read_cmcnt(ch);
324 		v2 = sh_cmt_read_cmcnt(ch);
325 		v3 = sh_cmt_read_cmcnt(ch);
326 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329 
330 	*has_wrapped = o1;
331 	return v2;
332 }
333 
334 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335 {
336 	unsigned long flags;
337 	u32 value;
338 
339 	/* start stop register shared by multiple timer channels */
340 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341 	value = sh_cmt_read_cmstr(ch);
342 
343 	if (start)
344 		value |= 1 << ch->timer_bit;
345 	else
346 		value &= ~(1 << ch->timer_bit);
347 
348 	sh_cmt_write_cmstr(ch, value);
349 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350 }
351 
352 static int sh_cmt_enable(struct sh_cmt_channel *ch)
353 {
354 	int ret;
355 
356 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357 
358 	/* enable clock */
359 	ret = clk_enable(ch->cmt->clk);
360 	if (ret) {
361 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
362 			ch->index);
363 		goto err0;
364 	}
365 
366 	/* make sure channel is disabled */
367 	sh_cmt_start_stop_ch(ch, 0);
368 
369 	/* configure channel, periodic mode and maximum timeout */
370 	if (ch->cmt->info->width == 16) {
371 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372 				   SH_CMT16_CMCSR_CKS512);
373 	} else {
374 		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375 			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
376 		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377 				   SH_CMT32_CMCSR_CMR_IRQ |
378 				   SH_CMT32_CMCSR_CKS_RCLK8);
379 	}
380 
381 	sh_cmt_write_cmcor(ch, 0xffffffff);
382 	ret = sh_cmt_write_cmcnt(ch, 0);
383 
384 	if (ret || sh_cmt_read_cmcnt(ch)) {
385 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
386 			ch->index);
387 		ret = -ETIMEDOUT;
388 		goto err1;
389 	}
390 
391 	/* enable channel */
392 	sh_cmt_start_stop_ch(ch, 1);
393 	return 0;
394  err1:
395 	/* stop clock */
396 	clk_disable(ch->cmt->clk);
397 
398  err0:
399 	return ret;
400 }
401 
402 static void sh_cmt_disable(struct sh_cmt_channel *ch)
403 {
404 	/* disable channel */
405 	sh_cmt_start_stop_ch(ch, 0);
406 
407 	/* disable interrupts in CMT block */
408 	sh_cmt_write_cmcsr(ch, 0);
409 
410 	/* stop clock */
411 	clk_disable(ch->cmt->clk);
412 
413 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
414 }
415 
416 /* private flags */
417 #define FLAG_CLOCKEVENT (1 << 0)
418 #define FLAG_CLOCKSOURCE (1 << 1)
419 #define FLAG_REPROGRAM (1 << 2)
420 #define FLAG_SKIPEVENT (1 << 3)
421 #define FLAG_IRQCONTEXT (1 << 4)
422 
423 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
424 					      int absolute)
425 {
426 	u32 value = ch->next_match_value;
427 	u32 new_match;
428 	u32 delay = 0;
429 	u32 now = 0;
430 	u32 has_wrapped;
431 
432 	now = sh_cmt_get_counter(ch, &has_wrapped);
433 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
434 
435 	if (has_wrapped) {
436 		/* we're competing with the interrupt handler.
437 		 *  -> let the interrupt handler reprogram the timer.
438 		 *  -> interrupt number two handles the event.
439 		 */
440 		ch->flags |= FLAG_SKIPEVENT;
441 		return;
442 	}
443 
444 	if (absolute)
445 		now = 0;
446 
447 	do {
448 		/* reprogram the timer hardware,
449 		 * but don't save the new match value yet.
450 		 */
451 		new_match = now + value + delay;
452 		if (new_match > ch->max_match_value)
453 			new_match = ch->max_match_value;
454 
455 		sh_cmt_write_cmcor(ch, new_match);
456 
457 		now = sh_cmt_get_counter(ch, &has_wrapped);
458 		if (has_wrapped && (new_match > ch->match_value)) {
459 			/* we are changing to a greater match value,
460 			 * so this wrap must be caused by the counter
461 			 * matching the old value.
462 			 * -> first interrupt reprograms the timer.
463 			 * -> interrupt number two handles the event.
464 			 */
465 			ch->flags |= FLAG_SKIPEVENT;
466 			break;
467 		}
468 
469 		if (has_wrapped) {
470 			/* we are changing to a smaller match value,
471 			 * so the wrap must be caused by the counter
472 			 * matching the new value.
473 			 * -> save programmed match value.
474 			 * -> let isr handle the event.
475 			 */
476 			ch->match_value = new_match;
477 			break;
478 		}
479 
480 		/* be safe: verify hardware settings */
481 		if (now < new_match) {
482 			/* timer value is below match value, all good.
483 			 * this makes sure we won't miss any match events.
484 			 * -> save programmed match value.
485 			 * -> let isr handle the event.
486 			 */
487 			ch->match_value = new_match;
488 			break;
489 		}
490 
491 		/* the counter has reached a value greater
492 		 * than our new match value. and since the
493 		 * has_wrapped flag isn't set we must have
494 		 * programmed a too close event.
495 		 * -> increase delay and retry.
496 		 */
497 		if (delay)
498 			delay <<= 1;
499 		else
500 			delay = 1;
501 
502 		if (!delay)
503 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
504 				 ch->index);
505 
506 	} while (delay);
507 }
508 
509 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
510 {
511 	if (delta > ch->max_match_value)
512 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
513 			 ch->index);
514 
515 	ch->next_match_value = delta;
516 	sh_cmt_clock_event_program_verify(ch, 0);
517 }
518 
519 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
520 {
521 	unsigned long flags;
522 
523 	raw_spin_lock_irqsave(&ch->lock, flags);
524 	__sh_cmt_set_next(ch, delta);
525 	raw_spin_unlock_irqrestore(&ch->lock, flags);
526 }
527 
528 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
529 {
530 	struct sh_cmt_channel *ch = dev_id;
531 	unsigned long flags;
532 
533 	/* clear flags */
534 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535 			   ch->cmt->info->clear_bits);
536 
537 	/* update clock source counter to begin with if enabled
538 	 * the wrap flag should be cleared by the timer specific
539 	 * isr before we end up here.
540 	 */
541 	if (ch->flags & FLAG_CLOCKSOURCE)
542 		ch->total_cycles += ch->match_value + 1;
543 
544 	if (!(ch->flags & FLAG_REPROGRAM))
545 		ch->next_match_value = ch->max_match_value;
546 
547 	ch->flags |= FLAG_IRQCONTEXT;
548 
549 	if (ch->flags & FLAG_CLOCKEVENT) {
550 		if (!(ch->flags & FLAG_SKIPEVENT)) {
551 			if (clockevent_state_oneshot(&ch->ced)) {
552 				ch->next_match_value = ch->max_match_value;
553 				ch->flags |= FLAG_REPROGRAM;
554 			}
555 
556 			ch->ced.event_handler(&ch->ced);
557 		}
558 	}
559 
560 	ch->flags &= ~FLAG_SKIPEVENT;
561 
562 	raw_spin_lock_irqsave(&ch->lock, flags);
563 
564 	if (ch->flags & FLAG_REPROGRAM) {
565 		ch->flags &= ~FLAG_REPROGRAM;
566 		sh_cmt_clock_event_program_verify(ch, 1);
567 
568 		if (ch->flags & FLAG_CLOCKEVENT)
569 			if ((clockevent_state_shutdown(&ch->ced))
570 			    || (ch->match_value == ch->next_match_value))
571 				ch->flags &= ~FLAG_REPROGRAM;
572 	}
573 
574 	ch->flags &= ~FLAG_IRQCONTEXT;
575 
576 	raw_spin_unlock_irqrestore(&ch->lock, flags);
577 
578 	return IRQ_HANDLED;
579 }
580 
581 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
582 {
583 	int ret = 0;
584 	unsigned long flags;
585 
586 	if (flag & FLAG_CLOCKSOURCE)
587 		pm_runtime_get_sync(&ch->cmt->pdev->dev);
588 
589 	raw_spin_lock_irqsave(&ch->lock, flags);
590 
591 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
592 		if (flag & FLAG_CLOCKEVENT)
593 			pm_runtime_get_sync(&ch->cmt->pdev->dev);
594 		ret = sh_cmt_enable(ch);
595 	}
596 
597 	if (ret)
598 		goto out;
599 	ch->flags |= flag;
600 
601 	/* setup timeout if no clockevent */
602 	if (ch->cmt->num_channels == 1 &&
603 	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
604 		__sh_cmt_set_next(ch, ch->max_match_value);
605  out:
606 	raw_spin_unlock_irqrestore(&ch->lock, flags);
607 
608 	return ret;
609 }
610 
611 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
612 {
613 	unsigned long flags;
614 	unsigned long f;
615 
616 	raw_spin_lock_irqsave(&ch->lock, flags);
617 
618 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
619 	ch->flags &= ~flag;
620 
621 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
622 		sh_cmt_disable(ch);
623 		if (flag & FLAG_CLOCKEVENT)
624 			pm_runtime_put(&ch->cmt->pdev->dev);
625 	}
626 
627 	/* adjust the timeout to maximum if only clocksource left */
628 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
629 		__sh_cmt_set_next(ch, ch->max_match_value);
630 
631 	raw_spin_unlock_irqrestore(&ch->lock, flags);
632 
633 	if (flag & FLAG_CLOCKSOURCE)
634 		pm_runtime_put(&ch->cmt->pdev->dev);
635 }
636 
637 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
638 {
639 	return container_of(cs, struct sh_cmt_channel, cs);
640 }
641 
642 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
643 {
644 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
645 	u32 has_wrapped;
646 
647 	if (ch->cmt->num_channels == 1) {
648 		unsigned long flags;
649 		u64 value;
650 		u32 raw;
651 
652 		raw_spin_lock_irqsave(&ch->lock, flags);
653 		value = ch->total_cycles;
654 		raw = sh_cmt_get_counter(ch, &has_wrapped);
655 
656 		if (unlikely(has_wrapped))
657 			raw += ch->match_value + 1;
658 		raw_spin_unlock_irqrestore(&ch->lock, flags);
659 
660 		return value + raw;
661 	}
662 
663 	return sh_cmt_get_counter(ch, &has_wrapped);
664 }
665 
666 static int sh_cmt_clocksource_enable(struct clocksource *cs)
667 {
668 	int ret;
669 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
670 
671 	WARN_ON(ch->cs_enabled);
672 
673 	ch->total_cycles = 0;
674 
675 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
676 	if (!ret)
677 		ch->cs_enabled = true;
678 
679 	return ret;
680 }
681 
682 static void sh_cmt_clocksource_disable(struct clocksource *cs)
683 {
684 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
685 
686 	WARN_ON(!ch->cs_enabled);
687 
688 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
689 	ch->cs_enabled = false;
690 }
691 
692 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
693 {
694 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
695 
696 	if (!ch->cs_enabled)
697 		return;
698 
699 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
700 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
701 }
702 
703 static void sh_cmt_clocksource_resume(struct clocksource *cs)
704 {
705 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
706 
707 	if (!ch->cs_enabled)
708 		return;
709 
710 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
711 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
712 }
713 
714 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
715 				       const char *name)
716 {
717 	struct clocksource *cs = &ch->cs;
718 
719 	cs->name = name;
720 	cs->rating = 125;
721 	cs->read = sh_cmt_clocksource_read;
722 	cs->enable = sh_cmt_clocksource_enable;
723 	cs->disable = sh_cmt_clocksource_disable;
724 	cs->suspend = sh_cmt_clocksource_suspend;
725 	cs->resume = sh_cmt_clocksource_resume;
726 	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
727 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
728 
729 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
730 		 ch->index);
731 
732 	clocksource_register_hz(cs, ch->cmt->rate);
733 	return 0;
734 }
735 
736 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
737 {
738 	return container_of(ced, struct sh_cmt_channel, ced);
739 }
740 
741 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
742 {
743 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
744 
745 	if (periodic)
746 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
747 	else
748 		sh_cmt_set_next(ch, ch->max_match_value);
749 }
750 
751 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
752 {
753 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
754 
755 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
756 	return 0;
757 }
758 
759 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
760 					int periodic)
761 {
762 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
763 
764 	/* deal with old setting first */
765 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
766 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
767 
768 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
769 		 ch->index, periodic ? "periodic" : "oneshot");
770 	sh_cmt_clock_event_start(ch, periodic);
771 	return 0;
772 }
773 
774 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
775 {
776 	return sh_cmt_clock_event_set_state(ced, 0);
777 }
778 
779 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
780 {
781 	return sh_cmt_clock_event_set_state(ced, 1);
782 }
783 
784 static int sh_cmt_clock_event_next(unsigned long delta,
785 				   struct clock_event_device *ced)
786 {
787 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
788 	unsigned long flags;
789 
790 	BUG_ON(!clockevent_state_oneshot(ced));
791 
792 	raw_spin_lock_irqsave(&ch->lock, flags);
793 
794 	if (likely(ch->flags & FLAG_IRQCONTEXT))
795 		ch->next_match_value = delta - 1;
796 	else
797 		__sh_cmt_set_next(ch, delta - 1);
798 
799 	raw_spin_unlock_irqrestore(&ch->lock, flags);
800 
801 	return 0;
802 }
803 
804 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
805 {
806 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
807 
808 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
809 	clk_unprepare(ch->cmt->clk);
810 }
811 
812 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
813 {
814 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
815 
816 	clk_prepare(ch->cmt->clk);
817 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
818 }
819 
820 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
821 				      const char *name)
822 {
823 	struct clock_event_device *ced = &ch->ced;
824 	int irq;
825 	int ret;
826 
827 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
828 	if (irq < 0)
829 		return irq;
830 
831 	ret = request_irq(irq, sh_cmt_interrupt,
832 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
833 			  dev_name(&ch->cmt->pdev->dev), ch);
834 	if (ret) {
835 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
836 			ch->index, irq);
837 		return ret;
838 	}
839 
840 	ced->name = name;
841 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
842 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
843 	ced->rating = 125;
844 	ced->cpumask = cpu_possible_mask;
845 	ced->set_next_event = sh_cmt_clock_event_next;
846 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
847 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
848 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
849 	ced->suspend = sh_cmt_clock_event_suspend;
850 	ced->resume = sh_cmt_clock_event_resume;
851 
852 	/* TODO: calculate good shift from rate and counter bit width */
853 	ced->shift = 32;
854 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
855 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
856 	ced->max_delta_ticks = ch->max_match_value;
857 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
858 	ced->min_delta_ticks = 0x1f;
859 
860 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
861 		 ch->index);
862 	clockevents_register_device(ced);
863 
864 	return 0;
865 }
866 
867 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
868 			   bool clockevent, bool clocksource)
869 {
870 	int ret;
871 
872 	if (clockevent) {
873 		ch->cmt->has_clockevent = true;
874 		ret = sh_cmt_register_clockevent(ch, name);
875 		if (ret < 0)
876 			return ret;
877 	}
878 
879 	if (clocksource) {
880 		ch->cmt->has_clocksource = true;
881 		sh_cmt_register_clocksource(ch, name);
882 	}
883 
884 	return 0;
885 }
886 
887 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
888 				unsigned int hwidx, bool clockevent,
889 				bool clocksource, struct sh_cmt_device *cmt)
890 {
891 	u32 value;
892 	int ret;
893 
894 	/* Skip unused channels. */
895 	if (!clockevent && !clocksource)
896 		return 0;
897 
898 	ch->cmt = cmt;
899 	ch->index = index;
900 	ch->hwidx = hwidx;
901 	ch->timer_bit = hwidx;
902 
903 	/*
904 	 * Compute the address of the channel control register block. For the
905 	 * timers with a per-channel start/stop register, compute its address
906 	 * as well.
907 	 */
908 	switch (cmt->info->model) {
909 	case SH_CMT_16BIT:
910 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
911 		break;
912 	case SH_CMT_32BIT:
913 	case SH_CMT_48BIT:
914 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
915 		break;
916 	case SH_CMT0_RCAR_GEN2:
917 	case SH_CMT1_RCAR_GEN2:
918 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
919 		ch->ioctrl = ch->iostart + 0x10;
920 		ch->timer_bit = 0;
921 
922 		/* Enable the clock supply to the channel */
923 		value = ioread32(cmt->mapbase + CMCLKE);
924 		value |= BIT(hwidx);
925 		iowrite32(value, cmt->mapbase + CMCLKE);
926 		break;
927 	}
928 
929 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
930 		ch->max_match_value = ~0;
931 	else
932 		ch->max_match_value = (1 << cmt->info->width) - 1;
933 
934 	ch->match_value = ch->max_match_value;
935 	raw_spin_lock_init(&ch->lock);
936 
937 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
938 			      clockevent, clocksource);
939 	if (ret) {
940 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
941 			ch->index);
942 		return ret;
943 	}
944 	ch->cs_enabled = false;
945 
946 	return 0;
947 }
948 
949 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
950 {
951 	struct resource *mem;
952 
953 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
954 	if (!mem) {
955 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
956 		return -ENXIO;
957 	}
958 
959 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
960 	if (cmt->mapbase == NULL) {
961 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
962 		return -ENXIO;
963 	}
964 
965 	return 0;
966 }
967 
968 static const struct platform_device_id sh_cmt_id_table[] = {
969 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
970 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
971 	{ }
972 };
973 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
974 
975 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
976 	{
977 		/* deprecated, preserved for backward compatibility */
978 		.compatible = "renesas,cmt-48",
979 		.data = &sh_cmt_info[SH_CMT_48BIT]
980 	},
981 	{
982 		/* deprecated, preserved for backward compatibility */
983 		.compatible = "renesas,cmt-48-gen2",
984 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
985 	},
986 	{
987 		.compatible = "renesas,r8a7740-cmt1",
988 		.data = &sh_cmt_info[SH_CMT_48BIT]
989 	},
990 	{
991 		.compatible = "renesas,sh73a0-cmt1",
992 		.data = &sh_cmt_info[SH_CMT_48BIT]
993 	},
994 	{
995 		.compatible = "renesas,rcar-gen2-cmt0",
996 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
997 	},
998 	{
999 		.compatible = "renesas,rcar-gen2-cmt1",
1000 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1001 	},
1002 	{
1003 		.compatible = "renesas,rcar-gen3-cmt0",
1004 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1005 	},
1006 	{
1007 		.compatible = "renesas,rcar-gen3-cmt1",
1008 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1009 	},
1010 	{
1011 		.compatible = "renesas,rcar-gen4-cmt0",
1012 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1013 	},
1014 	{
1015 		.compatible = "renesas,rcar-gen4-cmt1",
1016 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1017 	},
1018 	{ }
1019 };
1020 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1021 
1022 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1023 {
1024 	unsigned int mask, i;
1025 	unsigned long rate;
1026 	int ret;
1027 
1028 	cmt->pdev = pdev;
1029 	raw_spin_lock_init(&cmt->lock);
1030 
1031 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1032 		cmt->info = of_device_get_match_data(&pdev->dev);
1033 		cmt->hw_channels = cmt->info->channels_mask;
1034 	} else if (pdev->dev.platform_data) {
1035 		struct sh_timer_config *cfg = pdev->dev.platform_data;
1036 		const struct platform_device_id *id = pdev->id_entry;
1037 
1038 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1039 		cmt->hw_channels = cfg->channels_mask;
1040 	} else {
1041 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1042 		return -ENXIO;
1043 	}
1044 
1045 	/* Get hold of clock. */
1046 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1047 	if (IS_ERR(cmt->clk)) {
1048 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1049 		return PTR_ERR(cmt->clk);
1050 	}
1051 
1052 	ret = clk_prepare(cmt->clk);
1053 	if (ret < 0)
1054 		goto err_clk_put;
1055 
1056 	/* Determine clock rate. */
1057 	ret = clk_enable(cmt->clk);
1058 	if (ret < 0)
1059 		goto err_clk_unprepare;
1060 
1061 	rate = clk_get_rate(cmt->clk);
1062 	if (!rate) {
1063 		ret = -EINVAL;
1064 		goto err_clk_disable;
1065 	}
1066 
1067 	/* We shall wait 2 input clks after register writes */
1068 	if (cmt->info->model >= SH_CMT_48BIT)
1069 		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1070 	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1071 
1072 	/* Map the memory resource(s). */
1073 	ret = sh_cmt_map_memory(cmt);
1074 	if (ret < 0)
1075 		goto err_clk_disable;
1076 
1077 	/* Allocate and setup the channels. */
1078 	cmt->num_channels = hweight8(cmt->hw_channels);
1079 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1080 				GFP_KERNEL);
1081 	if (cmt->channels == NULL) {
1082 		ret = -ENOMEM;
1083 		goto err_unmap;
1084 	}
1085 
1086 	/*
1087 	 * Use the first channel as a clock event device and the second channel
1088 	 * as a clock source. If only one channel is available use it for both.
1089 	 */
1090 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1091 		unsigned int hwidx = ffs(mask) - 1;
1092 		bool clocksource = i == 1 || cmt->num_channels == 1;
1093 		bool clockevent = i == 0;
1094 
1095 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1096 					   clockevent, clocksource, cmt);
1097 		if (ret < 0)
1098 			goto err_unmap;
1099 
1100 		mask &= ~(1 << hwidx);
1101 	}
1102 
1103 	clk_disable(cmt->clk);
1104 
1105 	platform_set_drvdata(pdev, cmt);
1106 
1107 	return 0;
1108 
1109 err_unmap:
1110 	kfree(cmt->channels);
1111 	iounmap(cmt->mapbase);
1112 err_clk_disable:
1113 	clk_disable(cmt->clk);
1114 err_clk_unprepare:
1115 	clk_unprepare(cmt->clk);
1116 err_clk_put:
1117 	clk_put(cmt->clk);
1118 	return ret;
1119 }
1120 
1121 static int sh_cmt_probe(struct platform_device *pdev)
1122 {
1123 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1124 	int ret;
1125 
1126 	if (!is_sh_early_platform_device(pdev)) {
1127 		pm_runtime_set_active(&pdev->dev);
1128 		pm_runtime_enable(&pdev->dev);
1129 	}
1130 
1131 	if (cmt) {
1132 		dev_info(&pdev->dev, "kept as earlytimer\n");
1133 		goto out;
1134 	}
1135 
1136 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1137 	if (cmt == NULL)
1138 		return -ENOMEM;
1139 
1140 	ret = sh_cmt_setup(cmt, pdev);
1141 	if (ret) {
1142 		kfree(cmt);
1143 		pm_runtime_idle(&pdev->dev);
1144 		return ret;
1145 	}
1146 	if (is_sh_early_platform_device(pdev))
1147 		return 0;
1148 
1149  out:
1150 	if (cmt->has_clockevent || cmt->has_clocksource)
1151 		pm_runtime_irq_safe(&pdev->dev);
1152 	else
1153 		pm_runtime_idle(&pdev->dev);
1154 
1155 	return 0;
1156 }
1157 
1158 static struct platform_driver sh_cmt_device_driver = {
1159 	.probe		= sh_cmt_probe,
1160 	.driver		= {
1161 		.name	= "sh_cmt",
1162 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1163 		.suppress_bind_attrs = true,
1164 	},
1165 	.id_table	= sh_cmt_id_table,
1166 };
1167 
1168 static int __init sh_cmt_init(void)
1169 {
1170 	return platform_driver_register(&sh_cmt_device_driver);
1171 }
1172 
1173 static void __exit sh_cmt_exit(void)
1174 {
1175 	platform_driver_unregister(&sh_cmt_device_driver);
1176 }
1177 
1178 #ifdef CONFIG_SUPERH
1179 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1180 #endif
1181 
1182 subsys_initcall(sh_cmt_init);
1183 module_exit(sh_cmt_exit);
1184 
1185 MODULE_AUTHOR("Magnus Damm");
1186 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1187