xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision d2c43ff1)
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 struct sh_cmt_device;
36 
37 /*
38  * The CMT comes in 5 different identified flavours, depending not only on the
39  * SoC but also on the particular instance. The following table lists the main
40  * characteristics of those flavours.
41  *
42  *			16B	32B	32B-F	48B	48B-2
43  * -----------------------------------------------------------------------------
44  * Channels		2	1/4	1	6	2/8
45  * Control Width	16	16	16	16	32
46  * Counter Width	16	32	32	32/48	32/48
47  * Shared Start/Stop	Y	Y	Y	Y	N
48  *
49  * The 48-bit gen2 version has a per-channel start/stop register located in the
50  * channel registers block. All other versions have a shared start/stop register
51  * located in the global space.
52  *
53  * Channels are indexed from 0 to N-1 in the documentation. The channel index
54  * infers the start/stop bit position in the control register and the channel
55  * registers block address. Some CMT instances have a subset of channels
56  * available, in which case the index in the documentation doesn't match the
57  * "real" index as implemented in hardware. This is for instance the case with
58  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59  * in the documentation but using start/stop bit 5 and having its registers
60  * block at 0x60.
61  *
62  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64  */
65 
66 enum sh_cmt_model {
67 	SH_CMT_16BIT,
68 	SH_CMT_32BIT,
69 	SH_CMT_32BIT_FAST,
70 	SH_CMT_48BIT,
71 	SH_CMT_48BIT_GEN2,
72 };
73 
74 struct sh_cmt_info {
75 	enum sh_cmt_model model;
76 
77 	unsigned long width; /* 16 or 32 bit version of hardware block */
78 	unsigned long overflow_bit;
79 	unsigned long clear_bits;
80 
81 	/* callbacks for CMSTR and CMCSR access */
82 	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83 	void (*write_control)(void __iomem *base, unsigned long offs,
84 			      unsigned long value);
85 
86 	/* callbacks for CMCNT and CMCOR access */
87 	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88 	void (*write_count)(void __iomem *base, unsigned long offs,
89 			    unsigned long value);
90 };
91 
92 struct sh_cmt_channel {
93 	struct sh_cmt_device *cmt;
94 
95 	unsigned int index;	/* Index in the documentation */
96 	unsigned int hwidx;	/* Real hardware index */
97 
98 	void __iomem *iostart;
99 	void __iomem *ioctrl;
100 
101 	unsigned int timer_bit;
102 	unsigned long flags;
103 	unsigned long match_value;
104 	unsigned long next_match_value;
105 	unsigned long max_match_value;
106 	raw_spinlock_t lock;
107 	struct clock_event_device ced;
108 	struct clocksource cs;
109 	unsigned long total_cycles;
110 	bool cs_enabled;
111 };
112 
113 struct sh_cmt_device {
114 	struct platform_device *pdev;
115 
116 	const struct sh_cmt_info *info;
117 
118 	void __iomem *mapbase;
119 	struct clk *clk;
120 	unsigned long rate;
121 
122 	raw_spinlock_t lock; /* Protect the shared start/stop register */
123 
124 	struct sh_cmt_channel *channels;
125 	unsigned int num_channels;
126 	unsigned int hw_channels;
127 
128 	bool has_clockevent;
129 	bool has_clocksource;
130 };
131 
132 #define SH_CMT16_CMCSR_CMF		(1 << 7)
133 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
134 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
135 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
136 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
137 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
139 
140 #define SH_CMT32_CMCSR_CMF		(1 << 15)
141 #define SH_CMT32_CMCSR_OVF		(1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
143 #define SH_CMT32_CMCSR_STTF		(1 << 12)
144 #define SH_CMT32_CMCSR_STPF		(1 << 11)
145 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
146 #define SH_CMT32_CMCSR_CMS		(1 << 9)
147 #define SH_CMT32_CMCSR_CMM		(1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
159 
160 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162 	return ioread16(base + (offs << 1));
163 }
164 
165 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167 	return ioread32(base + (offs << 2));
168 }
169 
170 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171 			   unsigned long value)
172 {
173 	iowrite16(value, base + (offs << 1));
174 }
175 
176 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177 			   unsigned long value)
178 {
179 	iowrite32(value, base + (offs << 2));
180 }
181 
182 static const struct sh_cmt_info sh_cmt_info[] = {
183 	[SH_CMT_16BIT] = {
184 		.model = SH_CMT_16BIT,
185 		.width = 16,
186 		.overflow_bit = SH_CMT16_CMCSR_CMF,
187 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
188 		.read_control = sh_cmt_read16,
189 		.write_control = sh_cmt_write16,
190 		.read_count = sh_cmt_read16,
191 		.write_count = sh_cmt_write16,
192 	},
193 	[SH_CMT_32BIT] = {
194 		.model = SH_CMT_32BIT,
195 		.width = 32,
196 		.overflow_bit = SH_CMT32_CMCSR_CMF,
197 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198 		.read_control = sh_cmt_read16,
199 		.write_control = sh_cmt_write16,
200 		.read_count = sh_cmt_read32,
201 		.write_count = sh_cmt_write32,
202 	},
203 	[SH_CMT_32BIT_FAST] = {
204 		.model = SH_CMT_32BIT_FAST,
205 		.width = 32,
206 		.overflow_bit = SH_CMT32_CMCSR_CMF,
207 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
208 		.read_control = sh_cmt_read16,
209 		.write_control = sh_cmt_write16,
210 		.read_count = sh_cmt_read32,
211 		.write_count = sh_cmt_write32,
212 	},
213 	[SH_CMT_48BIT] = {
214 		.model = SH_CMT_48BIT,
215 		.width = 32,
216 		.overflow_bit = SH_CMT32_CMCSR_CMF,
217 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 		.read_control = sh_cmt_read32,
219 		.write_control = sh_cmt_write32,
220 		.read_count = sh_cmt_read32,
221 		.write_count = sh_cmt_write32,
222 	},
223 	[SH_CMT_48BIT_GEN2] = {
224 		.model = SH_CMT_48BIT_GEN2,
225 		.width = 32,
226 		.overflow_bit = SH_CMT32_CMCSR_CMF,
227 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 		.read_control = sh_cmt_read32,
229 		.write_control = sh_cmt_write32,
230 		.read_count = sh_cmt_read32,
231 		.write_count = sh_cmt_write32,
232 	},
233 };
234 
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238 
239 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
240 {
241 	if (ch->iostart)
242 		return ch->cmt->info->read_control(ch->iostart, 0);
243 	else
244 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
245 }
246 
247 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248 				      unsigned long value)
249 {
250 	if (ch->iostart)
251 		ch->cmt->info->write_control(ch->iostart, 0, value);
252 	else
253 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255 
256 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260 
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
262 				      unsigned long value)
263 {
264 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
265 }
266 
267 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
268 {
269 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
270 }
271 
272 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
273 				      unsigned long value)
274 {
275 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276 }
277 
278 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
279 				      unsigned long value)
280 {
281 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
282 }
283 
284 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
285 					int *has_wrapped)
286 {
287 	unsigned long v1, v2, v3;
288 	int o1, o2;
289 
290 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291 
292 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
293 	do {
294 		o2 = o1;
295 		v1 = sh_cmt_read_cmcnt(ch);
296 		v2 = sh_cmt_read_cmcnt(ch);
297 		v3 = sh_cmt_read_cmcnt(ch);
298 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
299 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
301 
302 	*has_wrapped = o1;
303 	return v2;
304 }
305 
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307 {
308 	unsigned long flags, value;
309 
310 	/* start stop register shared by multiple timer channels */
311 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
312 	value = sh_cmt_read_cmstr(ch);
313 
314 	if (start)
315 		value |= 1 << ch->timer_bit;
316 	else
317 		value &= ~(1 << ch->timer_bit);
318 
319 	sh_cmt_write_cmstr(ch, value);
320 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
321 }
322 
323 static int sh_cmt_enable(struct sh_cmt_channel *ch)
324 {
325 	int k, ret;
326 
327 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
329 
330 	/* enable clock */
331 	ret = clk_enable(ch->cmt->clk);
332 	if (ret) {
333 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 			ch->index);
335 		goto err0;
336 	}
337 
338 	/* make sure channel is disabled */
339 	sh_cmt_start_stop_ch(ch, 0);
340 
341 	/* configure channel, periodic mode and maximum timeout */
342 	if (ch->cmt->info->width == 16) {
343 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
344 				   SH_CMT16_CMCSR_CKS512);
345 	} else {
346 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
347 				   SH_CMT32_CMCSR_CMTOUT_IE |
348 				   SH_CMT32_CMCSR_CMR_IRQ |
349 				   SH_CMT32_CMCSR_CKS_RCLK8);
350 	}
351 
352 	sh_cmt_write_cmcor(ch, 0xffffffff);
353 	sh_cmt_write_cmcnt(ch, 0);
354 
355 	/*
356 	 * According to the sh73a0 user's manual, as CMCNT can be operated
357 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
358 	 * modifying CMCNT register; two RCLK cycles are necessary before
359 	 * this register is either read or any modification of the value
360 	 * it holds is reflected in the LSI's actual operation.
361 	 *
362 	 * While at it, we're supposed to clear out the CMCNT as of this
363 	 * moment, so make sure it's processed properly here.  This will
364 	 * take RCLKx2 at maximum.
365 	 */
366 	for (k = 0; k < 100; k++) {
367 		if (!sh_cmt_read_cmcnt(ch))
368 			break;
369 		udelay(1);
370 	}
371 
372 	if (sh_cmt_read_cmcnt(ch)) {
373 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
374 			ch->index);
375 		ret = -ETIMEDOUT;
376 		goto err1;
377 	}
378 
379 	/* enable channel */
380 	sh_cmt_start_stop_ch(ch, 1);
381 	return 0;
382  err1:
383 	/* stop clock */
384 	clk_disable(ch->cmt->clk);
385 
386  err0:
387 	return ret;
388 }
389 
390 static void sh_cmt_disable(struct sh_cmt_channel *ch)
391 {
392 	/* disable channel */
393 	sh_cmt_start_stop_ch(ch, 0);
394 
395 	/* disable interrupts in CMT block */
396 	sh_cmt_write_cmcsr(ch, 0);
397 
398 	/* stop clock */
399 	clk_disable(ch->cmt->clk);
400 
401 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
402 	pm_runtime_put(&ch->cmt->pdev->dev);
403 }
404 
405 /* private flags */
406 #define FLAG_CLOCKEVENT (1 << 0)
407 #define FLAG_CLOCKSOURCE (1 << 1)
408 #define FLAG_REPROGRAM (1 << 2)
409 #define FLAG_SKIPEVENT (1 << 3)
410 #define FLAG_IRQCONTEXT (1 << 4)
411 
412 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
413 					      int absolute)
414 {
415 	unsigned long new_match;
416 	unsigned long value = ch->next_match_value;
417 	unsigned long delay = 0;
418 	unsigned long now = 0;
419 	int has_wrapped;
420 
421 	now = sh_cmt_get_counter(ch, &has_wrapped);
422 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
423 
424 	if (has_wrapped) {
425 		/* we're competing with the interrupt handler.
426 		 *  -> let the interrupt handler reprogram the timer.
427 		 *  -> interrupt number two handles the event.
428 		 */
429 		ch->flags |= FLAG_SKIPEVENT;
430 		return;
431 	}
432 
433 	if (absolute)
434 		now = 0;
435 
436 	do {
437 		/* reprogram the timer hardware,
438 		 * but don't save the new match value yet.
439 		 */
440 		new_match = now + value + delay;
441 		if (new_match > ch->max_match_value)
442 			new_match = ch->max_match_value;
443 
444 		sh_cmt_write_cmcor(ch, new_match);
445 
446 		now = sh_cmt_get_counter(ch, &has_wrapped);
447 		if (has_wrapped && (new_match > ch->match_value)) {
448 			/* we are changing to a greater match value,
449 			 * so this wrap must be caused by the counter
450 			 * matching the old value.
451 			 * -> first interrupt reprograms the timer.
452 			 * -> interrupt number two handles the event.
453 			 */
454 			ch->flags |= FLAG_SKIPEVENT;
455 			break;
456 		}
457 
458 		if (has_wrapped) {
459 			/* we are changing to a smaller match value,
460 			 * so the wrap must be caused by the counter
461 			 * matching the new value.
462 			 * -> save programmed match value.
463 			 * -> let isr handle the event.
464 			 */
465 			ch->match_value = new_match;
466 			break;
467 		}
468 
469 		/* be safe: verify hardware settings */
470 		if (now < new_match) {
471 			/* timer value is below match value, all good.
472 			 * this makes sure we won't miss any match events.
473 			 * -> save programmed match value.
474 			 * -> let isr handle the event.
475 			 */
476 			ch->match_value = new_match;
477 			break;
478 		}
479 
480 		/* the counter has reached a value greater
481 		 * than our new match value. and since the
482 		 * has_wrapped flag isn't set we must have
483 		 * programmed a too close event.
484 		 * -> increase delay and retry.
485 		 */
486 		if (delay)
487 			delay <<= 1;
488 		else
489 			delay = 1;
490 
491 		if (!delay)
492 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
493 				 ch->index);
494 
495 	} while (delay);
496 }
497 
498 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
499 {
500 	if (delta > ch->max_match_value)
501 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
502 			 ch->index);
503 
504 	ch->next_match_value = delta;
505 	sh_cmt_clock_event_program_verify(ch, 0);
506 }
507 
508 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
509 {
510 	unsigned long flags;
511 
512 	raw_spin_lock_irqsave(&ch->lock, flags);
513 	__sh_cmt_set_next(ch, delta);
514 	raw_spin_unlock_irqrestore(&ch->lock, flags);
515 }
516 
517 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
518 {
519 	struct sh_cmt_channel *ch = dev_id;
520 
521 	/* clear flags */
522 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
523 			   ch->cmt->info->clear_bits);
524 
525 	/* update clock source counter to begin with if enabled
526 	 * the wrap flag should be cleared by the timer specific
527 	 * isr before we end up here.
528 	 */
529 	if (ch->flags & FLAG_CLOCKSOURCE)
530 		ch->total_cycles += ch->match_value + 1;
531 
532 	if (!(ch->flags & FLAG_REPROGRAM))
533 		ch->next_match_value = ch->max_match_value;
534 
535 	ch->flags |= FLAG_IRQCONTEXT;
536 
537 	if (ch->flags & FLAG_CLOCKEVENT) {
538 		if (!(ch->flags & FLAG_SKIPEVENT)) {
539 			if (clockevent_state_oneshot(&ch->ced)) {
540 				ch->next_match_value = ch->max_match_value;
541 				ch->flags |= FLAG_REPROGRAM;
542 			}
543 
544 			ch->ced.event_handler(&ch->ced);
545 		}
546 	}
547 
548 	ch->flags &= ~FLAG_SKIPEVENT;
549 
550 	if (ch->flags & FLAG_REPROGRAM) {
551 		ch->flags &= ~FLAG_REPROGRAM;
552 		sh_cmt_clock_event_program_verify(ch, 1);
553 
554 		if (ch->flags & FLAG_CLOCKEVENT)
555 			if ((clockevent_state_shutdown(&ch->ced))
556 			    || (ch->match_value == ch->next_match_value))
557 				ch->flags &= ~FLAG_REPROGRAM;
558 	}
559 
560 	ch->flags &= ~FLAG_IRQCONTEXT;
561 
562 	return IRQ_HANDLED;
563 }
564 
565 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
566 {
567 	int ret = 0;
568 	unsigned long flags;
569 
570 	raw_spin_lock_irqsave(&ch->lock, flags);
571 
572 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
573 		ret = sh_cmt_enable(ch);
574 
575 	if (ret)
576 		goto out;
577 	ch->flags |= flag;
578 
579 	/* setup timeout if no clockevent */
580 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
581 		__sh_cmt_set_next(ch, ch->max_match_value);
582  out:
583 	raw_spin_unlock_irqrestore(&ch->lock, flags);
584 
585 	return ret;
586 }
587 
588 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
589 {
590 	unsigned long flags;
591 	unsigned long f;
592 
593 	raw_spin_lock_irqsave(&ch->lock, flags);
594 
595 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
596 	ch->flags &= ~flag;
597 
598 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599 		sh_cmt_disable(ch);
600 
601 	/* adjust the timeout to maximum if only clocksource left */
602 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
603 		__sh_cmt_set_next(ch, ch->max_match_value);
604 
605 	raw_spin_unlock_irqrestore(&ch->lock, flags);
606 }
607 
608 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
609 {
610 	return container_of(cs, struct sh_cmt_channel, cs);
611 }
612 
613 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
614 {
615 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
616 	unsigned long flags, raw;
617 	unsigned long value;
618 	int has_wrapped;
619 
620 	raw_spin_lock_irqsave(&ch->lock, flags);
621 	value = ch->total_cycles;
622 	raw = sh_cmt_get_counter(ch, &has_wrapped);
623 
624 	if (unlikely(has_wrapped))
625 		raw += ch->match_value + 1;
626 	raw_spin_unlock_irqrestore(&ch->lock, flags);
627 
628 	return value + raw;
629 }
630 
631 static int sh_cmt_clocksource_enable(struct clocksource *cs)
632 {
633 	int ret;
634 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
635 
636 	WARN_ON(ch->cs_enabled);
637 
638 	ch->total_cycles = 0;
639 
640 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
641 	if (!ret)
642 		ch->cs_enabled = true;
643 
644 	return ret;
645 }
646 
647 static void sh_cmt_clocksource_disable(struct clocksource *cs)
648 {
649 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
650 
651 	WARN_ON(!ch->cs_enabled);
652 
653 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
654 	ch->cs_enabled = false;
655 }
656 
657 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
658 {
659 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
660 
661 	if (!ch->cs_enabled)
662 		return;
663 
664 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666 }
667 
668 static void sh_cmt_clocksource_resume(struct clocksource *cs)
669 {
670 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671 
672 	if (!ch->cs_enabled)
673 		return;
674 
675 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
676 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
677 }
678 
679 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
680 				       const char *name)
681 {
682 	struct clocksource *cs = &ch->cs;
683 
684 	cs->name = name;
685 	cs->rating = 125;
686 	cs->read = sh_cmt_clocksource_read;
687 	cs->enable = sh_cmt_clocksource_enable;
688 	cs->disable = sh_cmt_clocksource_disable;
689 	cs->suspend = sh_cmt_clocksource_suspend;
690 	cs->resume = sh_cmt_clocksource_resume;
691 	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
692 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
693 
694 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
695 		 ch->index);
696 
697 	clocksource_register_hz(cs, ch->cmt->rate);
698 	return 0;
699 }
700 
701 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
702 {
703 	return container_of(ced, struct sh_cmt_channel, ced);
704 }
705 
706 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
707 {
708 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
709 
710 	if (periodic)
711 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
712 	else
713 		sh_cmt_set_next(ch, ch->max_match_value);
714 }
715 
716 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
717 {
718 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
719 
720 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
721 	return 0;
722 }
723 
724 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
725 					int periodic)
726 {
727 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728 
729 	/* deal with old setting first */
730 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
731 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
732 
733 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
734 		 ch->index, periodic ? "periodic" : "oneshot");
735 	sh_cmt_clock_event_start(ch, periodic);
736 	return 0;
737 }
738 
739 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
740 {
741 	return sh_cmt_clock_event_set_state(ced, 0);
742 }
743 
744 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
745 {
746 	return sh_cmt_clock_event_set_state(ced, 1);
747 }
748 
749 static int sh_cmt_clock_event_next(unsigned long delta,
750 				   struct clock_event_device *ced)
751 {
752 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
753 
754 	BUG_ON(!clockevent_state_oneshot(ced));
755 	if (likely(ch->flags & FLAG_IRQCONTEXT))
756 		ch->next_match_value = delta - 1;
757 	else
758 		sh_cmt_set_next(ch, delta - 1);
759 
760 	return 0;
761 }
762 
763 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
764 {
765 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766 
767 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
768 	clk_unprepare(ch->cmt->clk);
769 }
770 
771 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
772 {
773 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774 
775 	clk_prepare(ch->cmt->clk);
776 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
777 }
778 
779 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
780 				      const char *name)
781 {
782 	struct clock_event_device *ced = &ch->ced;
783 	int irq;
784 	int ret;
785 
786 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
787 	if (irq < 0) {
788 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
789 			ch->index);
790 		return irq;
791 	}
792 
793 	ret = request_irq(irq, sh_cmt_interrupt,
794 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
795 			  dev_name(&ch->cmt->pdev->dev), ch);
796 	if (ret) {
797 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
798 			ch->index, irq);
799 		return ret;
800 	}
801 
802 	ced->name = name;
803 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
804 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
805 	ced->rating = 125;
806 	ced->cpumask = cpu_possible_mask;
807 	ced->set_next_event = sh_cmt_clock_event_next;
808 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
809 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
810 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
811 	ced->suspend = sh_cmt_clock_event_suspend;
812 	ced->resume = sh_cmt_clock_event_resume;
813 
814 	/* TODO: calculate good shift from rate and counter bit width */
815 	ced->shift = 32;
816 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
817 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
818 	ced->max_delta_ticks = ch->max_match_value;
819 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
820 	ced->min_delta_ticks = 0x1f;
821 
822 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
823 		 ch->index);
824 	clockevents_register_device(ced);
825 
826 	return 0;
827 }
828 
829 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
830 			   bool clockevent, bool clocksource)
831 {
832 	int ret;
833 
834 	if (clockevent) {
835 		ch->cmt->has_clockevent = true;
836 		ret = sh_cmt_register_clockevent(ch, name);
837 		if (ret < 0)
838 			return ret;
839 	}
840 
841 	if (clocksource) {
842 		ch->cmt->has_clocksource = true;
843 		sh_cmt_register_clocksource(ch, name);
844 	}
845 
846 	return 0;
847 }
848 
849 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
850 				unsigned int hwidx, bool clockevent,
851 				bool clocksource, struct sh_cmt_device *cmt)
852 {
853 	int ret;
854 
855 	/* Skip unused channels. */
856 	if (!clockevent && !clocksource)
857 		return 0;
858 
859 	ch->cmt = cmt;
860 	ch->index = index;
861 	ch->hwidx = hwidx;
862 
863 	/*
864 	 * Compute the address of the channel control register block. For the
865 	 * timers with a per-channel start/stop register, compute its address
866 	 * as well.
867 	 */
868 	switch (cmt->info->model) {
869 	case SH_CMT_16BIT:
870 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
871 		break;
872 	case SH_CMT_32BIT:
873 	case SH_CMT_48BIT:
874 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
875 		break;
876 	case SH_CMT_32BIT_FAST:
877 		/*
878 		 * The 32-bit "fast" timer has a single channel at hwidx 5 but
879 		 * is located at offset 0x40 instead of 0x60 for some reason.
880 		 */
881 		ch->ioctrl = cmt->mapbase + 0x40;
882 		break;
883 	case SH_CMT_48BIT_GEN2:
884 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
885 		ch->ioctrl = ch->iostart + 0x10;
886 		break;
887 	}
888 
889 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
890 		ch->max_match_value = ~0;
891 	else
892 		ch->max_match_value = (1 << cmt->info->width) - 1;
893 
894 	ch->match_value = ch->max_match_value;
895 	raw_spin_lock_init(&ch->lock);
896 
897 	ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
898 
899 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
900 			      clockevent, clocksource);
901 	if (ret) {
902 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
903 			ch->index);
904 		return ret;
905 	}
906 	ch->cs_enabled = false;
907 
908 	return 0;
909 }
910 
911 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
912 {
913 	struct resource *mem;
914 
915 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
916 	if (!mem) {
917 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
918 		return -ENXIO;
919 	}
920 
921 	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
922 	if (cmt->mapbase == NULL) {
923 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
924 		return -ENXIO;
925 	}
926 
927 	return 0;
928 }
929 
930 static const struct platform_device_id sh_cmt_id_table[] = {
931 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
932 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
933 	{ }
934 };
935 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
936 
937 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
938 	{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
939 	{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
940 	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
941 	{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
942 	{ }
943 };
944 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
945 
946 static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
947 {
948 	struct device_node *np = cmt->pdev->dev.of_node;
949 
950 	return of_property_read_u32(np, "renesas,channels-mask",
951 				    &cmt->hw_channels);
952 }
953 
954 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
955 {
956 	unsigned int mask;
957 	unsigned int i;
958 	int ret;
959 
960 	cmt->pdev = pdev;
961 	raw_spin_lock_init(&cmt->lock);
962 
963 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
964 		const struct of_device_id *id;
965 
966 		id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
967 		cmt->info = id->data;
968 
969 		ret = sh_cmt_parse_dt(cmt);
970 		if (ret < 0)
971 			return ret;
972 	} else if (pdev->dev.platform_data) {
973 		struct sh_timer_config *cfg = pdev->dev.platform_data;
974 		const struct platform_device_id *id = pdev->id_entry;
975 
976 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
977 		cmt->hw_channels = cfg->channels_mask;
978 	} else {
979 		dev_err(&cmt->pdev->dev, "missing platform data\n");
980 		return -ENXIO;
981 	}
982 
983 	/* Get hold of clock. */
984 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
985 	if (IS_ERR(cmt->clk)) {
986 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
987 		return PTR_ERR(cmt->clk);
988 	}
989 
990 	ret = clk_prepare(cmt->clk);
991 	if (ret < 0)
992 		goto err_clk_put;
993 
994 	/* Determine clock rate. */
995 	ret = clk_enable(cmt->clk);
996 	if (ret < 0)
997 		goto err_clk_unprepare;
998 
999 	if (cmt->info->width == 16)
1000 		cmt->rate = clk_get_rate(cmt->clk) / 512;
1001 	else
1002 		cmt->rate = clk_get_rate(cmt->clk) / 8;
1003 
1004 	clk_disable(cmt->clk);
1005 
1006 	/* Map the memory resource(s). */
1007 	ret = sh_cmt_map_memory(cmt);
1008 	if (ret < 0)
1009 		goto err_clk_unprepare;
1010 
1011 	/* Allocate and setup the channels. */
1012 	cmt->num_channels = hweight8(cmt->hw_channels);
1013 	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1014 				GFP_KERNEL);
1015 	if (cmt->channels == NULL) {
1016 		ret = -ENOMEM;
1017 		goto err_unmap;
1018 	}
1019 
1020 	/*
1021 	 * Use the first channel as a clock event device and the second channel
1022 	 * as a clock source. If only one channel is available use it for both.
1023 	 */
1024 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1025 		unsigned int hwidx = ffs(mask) - 1;
1026 		bool clocksource = i == 1 || cmt->num_channels == 1;
1027 		bool clockevent = i == 0;
1028 
1029 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1030 					   clockevent, clocksource, cmt);
1031 		if (ret < 0)
1032 			goto err_unmap;
1033 
1034 		mask &= ~(1 << hwidx);
1035 	}
1036 
1037 	platform_set_drvdata(pdev, cmt);
1038 
1039 	return 0;
1040 
1041 err_unmap:
1042 	kfree(cmt->channels);
1043 	iounmap(cmt->mapbase);
1044 err_clk_unprepare:
1045 	clk_unprepare(cmt->clk);
1046 err_clk_put:
1047 	clk_put(cmt->clk);
1048 	return ret;
1049 }
1050 
1051 static int sh_cmt_probe(struct platform_device *pdev)
1052 {
1053 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1054 	int ret;
1055 
1056 	if (!is_early_platform_device(pdev)) {
1057 		pm_runtime_set_active(&pdev->dev);
1058 		pm_runtime_enable(&pdev->dev);
1059 	}
1060 
1061 	if (cmt) {
1062 		dev_info(&pdev->dev, "kept as earlytimer\n");
1063 		goto out;
1064 	}
1065 
1066 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1067 	if (cmt == NULL)
1068 		return -ENOMEM;
1069 
1070 	ret = sh_cmt_setup(cmt, pdev);
1071 	if (ret) {
1072 		kfree(cmt);
1073 		pm_runtime_idle(&pdev->dev);
1074 		return ret;
1075 	}
1076 	if (is_early_platform_device(pdev))
1077 		return 0;
1078 
1079  out:
1080 	if (cmt->has_clockevent || cmt->has_clocksource)
1081 		pm_runtime_irq_safe(&pdev->dev);
1082 	else
1083 		pm_runtime_idle(&pdev->dev);
1084 
1085 	return 0;
1086 }
1087 
1088 static int sh_cmt_remove(struct platform_device *pdev)
1089 {
1090 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1091 }
1092 
1093 static struct platform_driver sh_cmt_device_driver = {
1094 	.probe		= sh_cmt_probe,
1095 	.remove		= sh_cmt_remove,
1096 	.driver		= {
1097 		.name	= "sh_cmt",
1098 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1099 	},
1100 	.id_table	= sh_cmt_id_table,
1101 };
1102 
1103 static int __init sh_cmt_init(void)
1104 {
1105 	return platform_driver_register(&sh_cmt_device_driver);
1106 }
1107 
1108 static void __exit sh_cmt_exit(void)
1109 {
1110 	platform_driver_unregister(&sh_cmt_device_driver);
1111 }
1112 
1113 early_platform_init("earlytimer", &sh_cmt_device_driver);
1114 subsys_initcall(sh_cmt_init);
1115 module_exit(sh_cmt_exit);
1116 
1117 MODULE_AUTHOR("Magnus Damm");
1118 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1119 MODULE_LICENSE("GPL v2");
1120