xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision d2999e1b)
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_timer.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 
34 struct sh_cmt_device;
35 
36 /*
37  * The CMT comes in 5 different identified flavours, depending not only on the
38  * SoC but also on the particular instance. The following table lists the main
39  * characteristics of those flavours.
40  *
41  *			16B	32B	32B-F	48B	48B-2
42  * -----------------------------------------------------------------------------
43  * Channels		2	1/4	1	6	2/8
44  * Control Width	16	16	16	16	32
45  * Counter Width	16	32	32	32/48	32/48
46  * Shared Start/Stop	Y	Y	Y	Y	N
47  *
48  * The 48-bit gen2 version has a per-channel start/stop register located in the
49  * channel registers block. All other versions have a shared start/stop register
50  * located in the global space.
51  *
52  * Channels are indexed from 0 to N-1 in the documentation. The channel index
53  * infers the start/stop bit position in the control register and the channel
54  * registers block address. Some CMT instances have a subset of channels
55  * available, in which case the index in the documentation doesn't match the
56  * "real" index as implemented in hardware. This is for instance the case with
57  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
58  * in the documentation but using start/stop bit 5 and having its registers
59  * block at 0x60.
60  *
61  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
62  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
63  */
64 
65 enum sh_cmt_model {
66 	SH_CMT_16BIT,
67 	SH_CMT_32BIT,
68 	SH_CMT_32BIT_FAST,
69 	SH_CMT_48BIT,
70 	SH_CMT_48BIT_GEN2,
71 };
72 
73 struct sh_cmt_info {
74 	enum sh_cmt_model model;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	unsigned long overflow_bit;
78 	unsigned long clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      unsigned long value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs,
88 			    unsigned long value);
89 };
90 
91 struct sh_cmt_channel {
92 	struct sh_cmt_device *cmt;
93 
94 	unsigned int index;	/* Index in the documentation */
95 	unsigned int hwidx;	/* Real hardware index */
96 
97 	void __iomem *iostart;
98 	void __iomem *ioctrl;
99 
100 	unsigned int timer_bit;
101 	unsigned long flags;
102 	unsigned long match_value;
103 	unsigned long next_match_value;
104 	unsigned long max_match_value;
105 	unsigned long rate;
106 	raw_spinlock_t lock;
107 	struct clock_event_device ced;
108 	struct clocksource cs;
109 	unsigned long total_cycles;
110 	bool cs_enabled;
111 };
112 
113 struct sh_cmt_device {
114 	struct platform_device *pdev;
115 
116 	const struct sh_cmt_info *info;
117 	bool legacy;
118 
119 	void __iomem *mapbase_ch;
120 	void __iomem *mapbase;
121 	struct clk *clk;
122 
123 	struct sh_cmt_channel *channels;
124 	unsigned int num_channels;
125 
126 	bool has_clockevent;
127 	bool has_clocksource;
128 };
129 
130 #define SH_CMT16_CMCSR_CMF		(1 << 7)
131 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
132 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
133 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
134 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
135 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
137 
138 #define SH_CMT32_CMCSR_CMF		(1 << 15)
139 #define SH_CMT32_CMCSR_OVF		(1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
141 #define SH_CMT32_CMCSR_STTF		(1 << 12)
142 #define SH_CMT32_CMCSR_STPF		(1 << 11)
143 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
144 #define SH_CMT32_CMCSR_CMS		(1 << 9)
145 #define SH_CMT32_CMCSR_CMM		(1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
157 
158 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160 	return ioread16(base + (offs << 1));
161 }
162 
163 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165 	return ioread32(base + (offs << 2));
166 }
167 
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
169 			   unsigned long value)
170 {
171 	iowrite16(value, base + (offs << 1));
172 }
173 
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
175 			   unsigned long value)
176 {
177 	iowrite32(value, base + (offs << 2));
178 }
179 
180 static const struct sh_cmt_info sh_cmt_info[] = {
181 	[SH_CMT_16BIT] = {
182 		.model = SH_CMT_16BIT,
183 		.width = 16,
184 		.overflow_bit = SH_CMT16_CMCSR_CMF,
185 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
186 		.read_control = sh_cmt_read16,
187 		.write_control = sh_cmt_write16,
188 		.read_count = sh_cmt_read16,
189 		.write_count = sh_cmt_write16,
190 	},
191 	[SH_CMT_32BIT] = {
192 		.model = SH_CMT_32BIT,
193 		.width = 32,
194 		.overflow_bit = SH_CMT32_CMCSR_CMF,
195 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196 		.read_control = sh_cmt_read16,
197 		.write_control = sh_cmt_write16,
198 		.read_count = sh_cmt_read32,
199 		.write_count = sh_cmt_write32,
200 	},
201 	[SH_CMT_32BIT_FAST] = {
202 		.model = SH_CMT_32BIT_FAST,
203 		.width = 32,
204 		.overflow_bit = SH_CMT32_CMCSR_CMF,
205 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 		.read_control = sh_cmt_read16,
207 		.write_control = sh_cmt_write16,
208 		.read_count = sh_cmt_read32,
209 		.write_count = sh_cmt_write32,
210 	},
211 	[SH_CMT_48BIT] = {
212 		.model = SH_CMT_48BIT,
213 		.width = 32,
214 		.overflow_bit = SH_CMT32_CMCSR_CMF,
215 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 		.read_control = sh_cmt_read32,
217 		.write_control = sh_cmt_write32,
218 		.read_count = sh_cmt_read32,
219 		.write_count = sh_cmt_write32,
220 	},
221 	[SH_CMT_48BIT_GEN2] = {
222 		.model = SH_CMT_48BIT_GEN2,
223 		.width = 32,
224 		.overflow_bit = SH_CMT32_CMCSR_CMF,
225 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
226 		.read_control = sh_cmt_read32,
227 		.write_control = sh_cmt_write32,
228 		.read_count = sh_cmt_read32,
229 		.write_count = sh_cmt_write32,
230 	},
231 };
232 
233 #define CMCSR 0 /* channel register */
234 #define CMCNT 1 /* channel register */
235 #define CMCOR 2 /* channel register */
236 
237 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
238 {
239 	if (ch->iostart)
240 		return ch->cmt->info->read_control(ch->iostart, 0);
241 	else
242 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
243 }
244 
245 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
246 				      unsigned long value)
247 {
248 	if (ch->iostart)
249 		ch->cmt->info->write_control(ch->iostart, 0, value);
250 	else
251 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253 
254 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258 
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
260 				      unsigned long value)
261 {
262 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
263 }
264 
265 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
266 {
267 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
268 }
269 
270 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
271 				      unsigned long value)
272 {
273 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
274 }
275 
276 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
277 				      unsigned long value)
278 {
279 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
280 }
281 
282 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
283 					int *has_wrapped)
284 {
285 	unsigned long v1, v2, v3;
286 	int o1, o2;
287 
288 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289 
290 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
291 	do {
292 		o2 = o1;
293 		v1 = sh_cmt_read_cmcnt(ch);
294 		v2 = sh_cmt_read_cmcnt(ch);
295 		v3 = sh_cmt_read_cmcnt(ch);
296 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
297 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
298 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
299 
300 	*has_wrapped = o1;
301 	return v2;
302 }
303 
304 static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
305 
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307 {
308 	unsigned long flags, value;
309 
310 	/* start stop register shared by multiple timer channels */
311 	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
312 	value = sh_cmt_read_cmstr(ch);
313 
314 	if (start)
315 		value |= 1 << ch->timer_bit;
316 	else
317 		value &= ~(1 << ch->timer_bit);
318 
319 	sh_cmt_write_cmstr(ch, value);
320 	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
321 }
322 
323 static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
324 {
325 	int k, ret;
326 
327 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
329 
330 	/* enable clock */
331 	ret = clk_enable(ch->cmt->clk);
332 	if (ret) {
333 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 			ch->index);
335 		goto err0;
336 	}
337 
338 	/* make sure channel is disabled */
339 	sh_cmt_start_stop_ch(ch, 0);
340 
341 	/* configure channel, periodic mode and maximum timeout */
342 	if (ch->cmt->info->width == 16) {
343 		*rate = clk_get_rate(ch->cmt->clk) / 512;
344 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345 				   SH_CMT16_CMCSR_CKS512);
346 	} else {
347 		*rate = clk_get_rate(ch->cmt->clk) / 8;
348 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
349 				   SH_CMT32_CMCSR_CMTOUT_IE |
350 				   SH_CMT32_CMCSR_CMR_IRQ |
351 				   SH_CMT32_CMCSR_CKS_RCLK8);
352 	}
353 
354 	sh_cmt_write_cmcor(ch, 0xffffffff);
355 	sh_cmt_write_cmcnt(ch, 0);
356 
357 	/*
358 	 * According to the sh73a0 user's manual, as CMCNT can be operated
359 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360 	 * modifying CMCNT register; two RCLK cycles are necessary before
361 	 * this register is either read or any modification of the value
362 	 * it holds is reflected in the LSI's actual operation.
363 	 *
364 	 * While at it, we're supposed to clear out the CMCNT as of this
365 	 * moment, so make sure it's processed properly here.  This will
366 	 * take RCLKx2 at maximum.
367 	 */
368 	for (k = 0; k < 100; k++) {
369 		if (!sh_cmt_read_cmcnt(ch))
370 			break;
371 		udelay(1);
372 	}
373 
374 	if (sh_cmt_read_cmcnt(ch)) {
375 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
376 			ch->index);
377 		ret = -ETIMEDOUT;
378 		goto err1;
379 	}
380 
381 	/* enable channel */
382 	sh_cmt_start_stop_ch(ch, 1);
383 	return 0;
384  err1:
385 	/* stop clock */
386 	clk_disable(ch->cmt->clk);
387 
388  err0:
389 	return ret;
390 }
391 
392 static void sh_cmt_disable(struct sh_cmt_channel *ch)
393 {
394 	/* disable channel */
395 	sh_cmt_start_stop_ch(ch, 0);
396 
397 	/* disable interrupts in CMT block */
398 	sh_cmt_write_cmcsr(ch, 0);
399 
400 	/* stop clock */
401 	clk_disable(ch->cmt->clk);
402 
403 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
404 	pm_runtime_put(&ch->cmt->pdev->dev);
405 }
406 
407 /* private flags */
408 #define FLAG_CLOCKEVENT (1 << 0)
409 #define FLAG_CLOCKSOURCE (1 << 1)
410 #define FLAG_REPROGRAM (1 << 2)
411 #define FLAG_SKIPEVENT (1 << 3)
412 #define FLAG_IRQCONTEXT (1 << 4)
413 
414 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
415 					      int absolute)
416 {
417 	unsigned long new_match;
418 	unsigned long value = ch->next_match_value;
419 	unsigned long delay = 0;
420 	unsigned long now = 0;
421 	int has_wrapped;
422 
423 	now = sh_cmt_get_counter(ch, &has_wrapped);
424 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
425 
426 	if (has_wrapped) {
427 		/* we're competing with the interrupt handler.
428 		 *  -> let the interrupt handler reprogram the timer.
429 		 *  -> interrupt number two handles the event.
430 		 */
431 		ch->flags |= FLAG_SKIPEVENT;
432 		return;
433 	}
434 
435 	if (absolute)
436 		now = 0;
437 
438 	do {
439 		/* reprogram the timer hardware,
440 		 * but don't save the new match value yet.
441 		 */
442 		new_match = now + value + delay;
443 		if (new_match > ch->max_match_value)
444 			new_match = ch->max_match_value;
445 
446 		sh_cmt_write_cmcor(ch, new_match);
447 
448 		now = sh_cmt_get_counter(ch, &has_wrapped);
449 		if (has_wrapped && (new_match > ch->match_value)) {
450 			/* we are changing to a greater match value,
451 			 * so this wrap must be caused by the counter
452 			 * matching the old value.
453 			 * -> first interrupt reprograms the timer.
454 			 * -> interrupt number two handles the event.
455 			 */
456 			ch->flags |= FLAG_SKIPEVENT;
457 			break;
458 		}
459 
460 		if (has_wrapped) {
461 			/* we are changing to a smaller match value,
462 			 * so the wrap must be caused by the counter
463 			 * matching the new value.
464 			 * -> save programmed match value.
465 			 * -> let isr handle the event.
466 			 */
467 			ch->match_value = new_match;
468 			break;
469 		}
470 
471 		/* be safe: verify hardware settings */
472 		if (now < new_match) {
473 			/* timer value is below match value, all good.
474 			 * this makes sure we won't miss any match events.
475 			 * -> save programmed match value.
476 			 * -> let isr handle the event.
477 			 */
478 			ch->match_value = new_match;
479 			break;
480 		}
481 
482 		/* the counter has reached a value greater
483 		 * than our new match value. and since the
484 		 * has_wrapped flag isn't set we must have
485 		 * programmed a too close event.
486 		 * -> increase delay and retry.
487 		 */
488 		if (delay)
489 			delay <<= 1;
490 		else
491 			delay = 1;
492 
493 		if (!delay)
494 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
495 				 ch->index);
496 
497 	} while (delay);
498 }
499 
500 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
501 {
502 	if (delta > ch->max_match_value)
503 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
504 			 ch->index);
505 
506 	ch->next_match_value = delta;
507 	sh_cmt_clock_event_program_verify(ch, 0);
508 }
509 
510 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511 {
512 	unsigned long flags;
513 
514 	raw_spin_lock_irqsave(&ch->lock, flags);
515 	__sh_cmt_set_next(ch, delta);
516 	raw_spin_unlock_irqrestore(&ch->lock, flags);
517 }
518 
519 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
520 {
521 	struct sh_cmt_channel *ch = dev_id;
522 
523 	/* clear flags */
524 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
525 			   ch->cmt->info->clear_bits);
526 
527 	/* update clock source counter to begin with if enabled
528 	 * the wrap flag should be cleared by the timer specific
529 	 * isr before we end up here.
530 	 */
531 	if (ch->flags & FLAG_CLOCKSOURCE)
532 		ch->total_cycles += ch->match_value + 1;
533 
534 	if (!(ch->flags & FLAG_REPROGRAM))
535 		ch->next_match_value = ch->max_match_value;
536 
537 	ch->flags |= FLAG_IRQCONTEXT;
538 
539 	if (ch->flags & FLAG_CLOCKEVENT) {
540 		if (!(ch->flags & FLAG_SKIPEVENT)) {
541 			if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
542 				ch->next_match_value = ch->max_match_value;
543 				ch->flags |= FLAG_REPROGRAM;
544 			}
545 
546 			ch->ced.event_handler(&ch->ced);
547 		}
548 	}
549 
550 	ch->flags &= ~FLAG_SKIPEVENT;
551 
552 	if (ch->flags & FLAG_REPROGRAM) {
553 		ch->flags &= ~FLAG_REPROGRAM;
554 		sh_cmt_clock_event_program_verify(ch, 1);
555 
556 		if (ch->flags & FLAG_CLOCKEVENT)
557 			if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
558 			    || (ch->match_value == ch->next_match_value))
559 				ch->flags &= ~FLAG_REPROGRAM;
560 	}
561 
562 	ch->flags &= ~FLAG_IRQCONTEXT;
563 
564 	return IRQ_HANDLED;
565 }
566 
567 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
568 {
569 	int ret = 0;
570 	unsigned long flags;
571 
572 	raw_spin_lock_irqsave(&ch->lock, flags);
573 
574 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
575 		ret = sh_cmt_enable(ch, &ch->rate);
576 
577 	if (ret)
578 		goto out;
579 	ch->flags |= flag;
580 
581 	/* setup timeout if no clockevent */
582 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583 		__sh_cmt_set_next(ch, ch->max_match_value);
584  out:
585 	raw_spin_unlock_irqrestore(&ch->lock, flags);
586 
587 	return ret;
588 }
589 
590 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
591 {
592 	unsigned long flags;
593 	unsigned long f;
594 
595 	raw_spin_lock_irqsave(&ch->lock, flags);
596 
597 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598 	ch->flags &= ~flag;
599 
600 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601 		sh_cmt_disable(ch);
602 
603 	/* adjust the timeout to maximum if only clocksource left */
604 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605 		__sh_cmt_set_next(ch, ch->max_match_value);
606 
607 	raw_spin_unlock_irqrestore(&ch->lock, flags);
608 }
609 
610 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
611 {
612 	return container_of(cs, struct sh_cmt_channel, cs);
613 }
614 
615 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
616 {
617 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
618 	unsigned long flags, raw;
619 	unsigned long value;
620 	int has_wrapped;
621 
622 	raw_spin_lock_irqsave(&ch->lock, flags);
623 	value = ch->total_cycles;
624 	raw = sh_cmt_get_counter(ch, &has_wrapped);
625 
626 	if (unlikely(has_wrapped))
627 		raw += ch->match_value + 1;
628 	raw_spin_unlock_irqrestore(&ch->lock, flags);
629 
630 	return value + raw;
631 }
632 
633 static int sh_cmt_clocksource_enable(struct clocksource *cs)
634 {
635 	int ret;
636 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
637 
638 	WARN_ON(ch->cs_enabled);
639 
640 	ch->total_cycles = 0;
641 
642 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643 	if (!ret) {
644 		__clocksource_updatefreq_hz(cs, ch->rate);
645 		ch->cs_enabled = true;
646 	}
647 	return ret;
648 }
649 
650 static void sh_cmt_clocksource_disable(struct clocksource *cs)
651 {
652 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
653 
654 	WARN_ON(!ch->cs_enabled);
655 
656 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 	ch->cs_enabled = false;
658 }
659 
660 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
661 {
662 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
663 
664 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666 }
667 
668 static void sh_cmt_clocksource_resume(struct clocksource *cs)
669 {
670 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671 
672 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
673 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
674 }
675 
676 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
677 				       const char *name)
678 {
679 	struct clocksource *cs = &ch->cs;
680 
681 	cs->name = name;
682 	cs->rating = 125;
683 	cs->read = sh_cmt_clocksource_read;
684 	cs->enable = sh_cmt_clocksource_enable;
685 	cs->disable = sh_cmt_clocksource_disable;
686 	cs->suspend = sh_cmt_clocksource_suspend;
687 	cs->resume = sh_cmt_clocksource_resume;
688 	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
689 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
690 
691 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
692 		 ch->index);
693 
694 	/* Register with dummy 1 Hz value, gets updated in ->enable() */
695 	clocksource_register_hz(cs, 1);
696 	return 0;
697 }
698 
699 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
700 {
701 	return container_of(ced, struct sh_cmt_channel, ced);
702 }
703 
704 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
705 {
706 	struct clock_event_device *ced = &ch->ced;
707 
708 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
709 
710 	/* TODO: calculate good shift from rate and counter bit width */
711 
712 	ced->shift = 32;
713 	ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
714 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
715 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
716 
717 	if (periodic)
718 		sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
719 	else
720 		sh_cmt_set_next(ch, ch->max_match_value);
721 }
722 
723 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
724 				    struct clock_event_device *ced)
725 {
726 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
727 
728 	/* deal with old setting first */
729 	switch (ced->mode) {
730 	case CLOCK_EVT_MODE_PERIODIC:
731 	case CLOCK_EVT_MODE_ONESHOT:
732 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
733 		break;
734 	default:
735 		break;
736 	}
737 
738 	switch (mode) {
739 	case CLOCK_EVT_MODE_PERIODIC:
740 		dev_info(&ch->cmt->pdev->dev,
741 			 "ch%u: used for periodic clock events\n", ch->index);
742 		sh_cmt_clock_event_start(ch, 1);
743 		break;
744 	case CLOCK_EVT_MODE_ONESHOT:
745 		dev_info(&ch->cmt->pdev->dev,
746 			 "ch%u: used for oneshot clock events\n", ch->index);
747 		sh_cmt_clock_event_start(ch, 0);
748 		break;
749 	case CLOCK_EVT_MODE_SHUTDOWN:
750 	case CLOCK_EVT_MODE_UNUSED:
751 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752 		break;
753 	default:
754 		break;
755 	}
756 }
757 
758 static int sh_cmt_clock_event_next(unsigned long delta,
759 				   struct clock_event_device *ced)
760 {
761 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762 
763 	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
764 	if (likely(ch->flags & FLAG_IRQCONTEXT))
765 		ch->next_match_value = delta - 1;
766 	else
767 		sh_cmt_set_next(ch, delta - 1);
768 
769 	return 0;
770 }
771 
772 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
773 {
774 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
775 
776 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
777 	clk_unprepare(ch->cmt->clk);
778 }
779 
780 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
781 {
782 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
783 
784 	clk_prepare(ch->cmt->clk);
785 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
786 }
787 
788 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
789 				      const char *name)
790 {
791 	struct clock_event_device *ced = &ch->ced;
792 	int irq;
793 	int ret;
794 
795 	irq = platform_get_irq(ch->cmt->pdev, ch->cmt->legacy ? 0 : ch->index);
796 	if (irq < 0) {
797 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
798 			ch->index);
799 		return irq;
800 	}
801 
802 	ret = request_irq(irq, sh_cmt_interrupt,
803 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
804 			  dev_name(&ch->cmt->pdev->dev), ch);
805 	if (ret) {
806 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
807 			ch->index, irq);
808 		return ret;
809 	}
810 
811 	ced->name = name;
812 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
813 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
814 	ced->rating = 125;
815 	ced->cpumask = cpu_possible_mask;
816 	ced->set_next_event = sh_cmt_clock_event_next;
817 	ced->set_mode = sh_cmt_clock_event_mode;
818 	ced->suspend = sh_cmt_clock_event_suspend;
819 	ced->resume = sh_cmt_clock_event_resume;
820 
821 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
822 		 ch->index);
823 	clockevents_register_device(ced);
824 
825 	return 0;
826 }
827 
828 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
829 			   bool clockevent, bool clocksource)
830 {
831 	int ret;
832 
833 	if (clockevent) {
834 		ch->cmt->has_clockevent = true;
835 		ret = sh_cmt_register_clockevent(ch, name);
836 		if (ret < 0)
837 			return ret;
838 	}
839 
840 	if (clocksource) {
841 		ch->cmt->has_clocksource = true;
842 		sh_cmt_register_clocksource(ch, name);
843 	}
844 
845 	return 0;
846 }
847 
848 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
849 				unsigned int hwidx, bool clockevent,
850 				bool clocksource, struct sh_cmt_device *cmt)
851 {
852 	int ret;
853 
854 	/* Skip unused channels. */
855 	if (!clockevent && !clocksource)
856 		return 0;
857 
858 	ch->cmt = cmt;
859 	ch->index = index;
860 	ch->hwidx = hwidx;
861 
862 	/*
863 	 * Compute the address of the channel control register block. For the
864 	 * timers with a per-channel start/stop register, compute its address
865 	 * as well.
866 	 *
867 	 * For legacy configuration the address has been mapped explicitly.
868 	 */
869 	if (cmt->legacy) {
870 		ch->ioctrl = cmt->mapbase_ch;
871 	} else {
872 		switch (cmt->info->model) {
873 		case SH_CMT_16BIT:
874 			ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
875 			break;
876 		case SH_CMT_32BIT:
877 		case SH_CMT_48BIT:
878 			ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
879 			break;
880 		case SH_CMT_32BIT_FAST:
881 			/*
882 			 * The 32-bit "fast" timer has a single channel at hwidx
883 			 * 5 but is located at offset 0x40 instead of 0x60 for
884 			 * some reason.
885 			 */
886 			ch->ioctrl = cmt->mapbase + 0x40;
887 			break;
888 		case SH_CMT_48BIT_GEN2:
889 			ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
890 			ch->ioctrl = ch->iostart + 0x10;
891 			break;
892 		}
893 	}
894 
895 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
896 		ch->max_match_value = ~0;
897 	else
898 		ch->max_match_value = (1 << cmt->info->width) - 1;
899 
900 	ch->match_value = ch->max_match_value;
901 	raw_spin_lock_init(&ch->lock);
902 
903 	if (cmt->legacy) {
904 		ch->timer_bit = ch->hwidx;
905 	} else {
906 		ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2
907 			      ? 0 : ch->hwidx;
908 	}
909 
910 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
911 			      clockevent, clocksource);
912 	if (ret) {
913 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
914 			ch->index);
915 		return ret;
916 	}
917 	ch->cs_enabled = false;
918 
919 	return 0;
920 }
921 
922 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
923 {
924 	struct resource *mem;
925 
926 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
927 	if (!mem) {
928 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
929 		return -ENXIO;
930 	}
931 
932 	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
933 	if (cmt->mapbase == NULL) {
934 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
935 		return -ENXIO;
936 	}
937 
938 	return 0;
939 }
940 
941 static int sh_cmt_map_memory_legacy(struct sh_cmt_device *cmt)
942 {
943 	struct sh_timer_config *cfg = cmt->pdev->dev.platform_data;
944 	struct resource *res, *res2;
945 
946 	/* map memory, let mapbase_ch point to our channel */
947 	res = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
948 	if (!res) {
949 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
950 		return -ENXIO;
951 	}
952 
953 	cmt->mapbase_ch = ioremap_nocache(res->start, resource_size(res));
954 	if (cmt->mapbase_ch == NULL) {
955 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
956 		return -ENXIO;
957 	}
958 
959 	/* optional resource for the shared timer start/stop register */
960 	res2 = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 1);
961 
962 	/* map second resource for CMSTR */
963 	cmt->mapbase = ioremap_nocache(res2 ? res2->start :
964 				       res->start - cfg->channel_offset,
965 				       res2 ? resource_size(res2) : 2);
966 	if (cmt->mapbase == NULL) {
967 		dev_err(&cmt->pdev->dev, "failed to remap I/O second memory\n");
968 		iounmap(cmt->mapbase_ch);
969 		return -ENXIO;
970 	}
971 
972 	/* identify the model based on the resources */
973 	if (resource_size(res) == 6)
974 		cmt->info = &sh_cmt_info[SH_CMT_16BIT];
975 	else if (res2 && (resource_size(res2) == 4))
976 		cmt->info = &sh_cmt_info[SH_CMT_48BIT_GEN2];
977 	else
978 		cmt->info = &sh_cmt_info[SH_CMT_32BIT];
979 
980 	return 0;
981 }
982 
983 static void sh_cmt_unmap_memory(struct sh_cmt_device *cmt)
984 {
985 	iounmap(cmt->mapbase);
986 	if (cmt->mapbase_ch)
987 		iounmap(cmt->mapbase_ch);
988 }
989 
990 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
991 {
992 	struct sh_timer_config *cfg = pdev->dev.platform_data;
993 	const struct platform_device_id *id = pdev->id_entry;
994 	unsigned int hw_channels;
995 	int ret;
996 
997 	memset(cmt, 0, sizeof(*cmt));
998 	cmt->pdev = pdev;
999 
1000 	if (!cfg) {
1001 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1002 		return -ENXIO;
1003 	}
1004 
1005 	cmt->info = (const struct sh_cmt_info *)id->driver_data;
1006 	cmt->legacy = cmt->info ? false : true;
1007 
1008 	/* Get hold of clock. */
1009 	cmt->clk = clk_get(&cmt->pdev->dev, cmt->legacy ? "cmt_fck" : "fck");
1010 	if (IS_ERR(cmt->clk)) {
1011 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1012 		return PTR_ERR(cmt->clk);
1013 	}
1014 
1015 	ret = clk_prepare(cmt->clk);
1016 	if (ret < 0)
1017 		goto err_clk_put;
1018 
1019 	/*
1020 	 * Map the memory resource(s). We need to support both the legacy
1021 	 * platform device configuration (with one device per channel) and the
1022 	 * new version (with multiple channels per device).
1023 	 */
1024 	if (cmt->legacy)
1025 		ret = sh_cmt_map_memory_legacy(cmt);
1026 	else
1027 		ret = sh_cmt_map_memory(cmt);
1028 
1029 	if (ret < 0)
1030 		goto err_clk_unprepare;
1031 
1032 	/* Allocate and setup the channels. */
1033 	if (cmt->legacy) {
1034 		cmt->num_channels = 1;
1035 		hw_channels = 0;
1036 	} else {
1037 		cmt->num_channels = hweight8(cfg->channels_mask);
1038 		hw_channels = cfg->channels_mask;
1039 	}
1040 
1041 	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1042 				GFP_KERNEL);
1043 	if (cmt->channels == NULL) {
1044 		ret = -ENOMEM;
1045 		goto err_unmap;
1046 	}
1047 
1048 	if (cmt->legacy) {
1049 		ret = sh_cmt_setup_channel(&cmt->channels[0],
1050 					   cfg->timer_bit, cfg->timer_bit,
1051 					   cfg->clockevent_rating != 0,
1052 					   cfg->clocksource_rating != 0, cmt);
1053 		if (ret < 0)
1054 			goto err_unmap;
1055 	} else {
1056 		unsigned int mask = hw_channels;
1057 		unsigned int i;
1058 
1059 		/*
1060 		 * Use the first channel as a clock event device and the second
1061 		 * channel as a clock source. If only one channel is available
1062 		 * use it for both.
1063 		 */
1064 		for (i = 0; i < cmt->num_channels; ++i) {
1065 			unsigned int hwidx = ffs(mask) - 1;
1066 			bool clocksource = i == 1 || cmt->num_channels == 1;
1067 			bool clockevent = i == 0;
1068 
1069 			ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1070 						   clockevent, clocksource,
1071 						   cmt);
1072 			if (ret < 0)
1073 				goto err_unmap;
1074 
1075 			mask &= ~(1 << hwidx);
1076 		}
1077 	}
1078 
1079 	platform_set_drvdata(pdev, cmt);
1080 
1081 	return 0;
1082 
1083 err_unmap:
1084 	kfree(cmt->channels);
1085 	sh_cmt_unmap_memory(cmt);
1086 err_clk_unprepare:
1087 	clk_unprepare(cmt->clk);
1088 err_clk_put:
1089 	clk_put(cmt->clk);
1090 	return ret;
1091 }
1092 
1093 static int sh_cmt_probe(struct platform_device *pdev)
1094 {
1095 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1096 	int ret;
1097 
1098 	if (!is_early_platform_device(pdev)) {
1099 		pm_runtime_set_active(&pdev->dev);
1100 		pm_runtime_enable(&pdev->dev);
1101 	}
1102 
1103 	if (cmt) {
1104 		dev_info(&pdev->dev, "kept as earlytimer\n");
1105 		goto out;
1106 	}
1107 
1108 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1109 	if (cmt == NULL)
1110 		return -ENOMEM;
1111 
1112 	ret = sh_cmt_setup(cmt, pdev);
1113 	if (ret) {
1114 		kfree(cmt);
1115 		pm_runtime_idle(&pdev->dev);
1116 		return ret;
1117 	}
1118 	if (is_early_platform_device(pdev))
1119 		return 0;
1120 
1121  out:
1122 	if (cmt->has_clockevent || cmt->has_clocksource)
1123 		pm_runtime_irq_safe(&pdev->dev);
1124 	else
1125 		pm_runtime_idle(&pdev->dev);
1126 
1127 	return 0;
1128 }
1129 
1130 static int sh_cmt_remove(struct platform_device *pdev)
1131 {
1132 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1133 }
1134 
1135 static const struct platform_device_id sh_cmt_id_table[] = {
1136 	{ "sh_cmt", 0 },
1137 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
1138 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1139 	{ "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
1140 	{ "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
1141 	{ "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
1142 	{ }
1143 };
1144 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
1145 
1146 static struct platform_driver sh_cmt_device_driver = {
1147 	.probe		= sh_cmt_probe,
1148 	.remove		= sh_cmt_remove,
1149 	.driver		= {
1150 		.name	= "sh_cmt",
1151 	},
1152 	.id_table	= sh_cmt_id_table,
1153 };
1154 
1155 static int __init sh_cmt_init(void)
1156 {
1157 	return platform_driver_register(&sh_cmt_device_driver);
1158 }
1159 
1160 static void __exit sh_cmt_exit(void)
1161 {
1162 	platform_driver_unregister(&sh_cmt_device_driver);
1163 }
1164 
1165 early_platform_init("earlytimer", &sh_cmt_device_driver);
1166 subsys_initcall(sh_cmt_init);
1167 module_exit(sh_cmt_exit);
1168 
1169 MODULE_AUTHOR("Magnus Damm");
1170 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1171 MODULE_LICENSE("GPL v2");
1172