xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision ca79522c)
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/io.h>
26 #include <linux/clk.h>
27 #include <linux/irq.h>
28 #include <linux/err.h>
29 #include <linux/delay.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36 #include <linux/pm_runtime.h>
37 
38 struct sh_cmt_priv {
39 	void __iomem *mapbase;
40 	struct clk *clk;
41 	unsigned long width; /* 16 or 32 bit version of hardware block */
42 	unsigned long overflow_bit;
43 	unsigned long clear_bits;
44 	struct irqaction irqaction;
45 	struct platform_device *pdev;
46 
47 	unsigned long flags;
48 	unsigned long match_value;
49 	unsigned long next_match_value;
50 	unsigned long max_match_value;
51 	unsigned long rate;
52 	raw_spinlock_t lock;
53 	struct clock_event_device ced;
54 	struct clocksource cs;
55 	unsigned long total_cycles;
56 	bool cs_enabled;
57 
58 	/* callbacks for CMSTR and CMCSR access */
59 	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
60 	void (*write_control)(void __iomem *base, unsigned long offs,
61 			      unsigned long value);
62 
63 	/* callbacks for CMCNT and CMCOR access */
64 	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
65 	void (*write_count)(void __iomem *base, unsigned long offs,
66 			    unsigned long value);
67 };
68 
69 /* Examples of supported CMT timer register layouts and I/O access widths:
70  *
71  * "16-bit counter and 16-bit control" as found on sh7263:
72  * CMSTR 0xfffec000 16-bit
73  * CMCSR 0xfffec002 16-bit
74  * CMCNT 0xfffec004 16-bit
75  * CMCOR 0xfffec006 16-bit
76  *
77  * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
78  * CMSTR 0xffca0000 16-bit
79  * CMCSR 0xffca0060 16-bit
80  * CMCNT 0xffca0064 32-bit
81  * CMCOR 0xffca0068 32-bit
82  */
83 
84 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
85 {
86 	return ioread16(base + (offs << 1));
87 }
88 
89 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
90 {
91 	return ioread32(base + (offs << 2));
92 }
93 
94 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
95 			   unsigned long value)
96 {
97 	iowrite16(value, base + (offs << 1));
98 }
99 
100 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
101 			   unsigned long value)
102 {
103 	iowrite32(value, base + (offs << 2));
104 }
105 
106 #define CMCSR 0 /* channel register */
107 #define CMCNT 1 /* channel register */
108 #define CMCOR 2 /* channel register */
109 
110 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
111 {
112 	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
113 
114 	return p->read_control(p->mapbase - cfg->channel_offset, 0);
115 }
116 
117 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
118 {
119 	return p->read_control(p->mapbase, CMCSR);
120 }
121 
122 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
123 {
124 	return p->read_count(p->mapbase, CMCNT);
125 }
126 
127 static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
128 				      unsigned long value)
129 {
130 	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
131 
132 	p->write_control(p->mapbase - cfg->channel_offset, 0, value);
133 }
134 
135 static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
136 				      unsigned long value)
137 {
138 	p->write_control(p->mapbase, CMCSR, value);
139 }
140 
141 static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
142 				      unsigned long value)
143 {
144 	p->write_count(p->mapbase, CMCNT, value);
145 }
146 
147 static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
148 				      unsigned long value)
149 {
150 	p->write_count(p->mapbase, CMCOR, value);
151 }
152 
153 static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
154 					int *has_wrapped)
155 {
156 	unsigned long v1, v2, v3;
157 	int o1, o2;
158 
159 	o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
160 
161 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
162 	do {
163 		o2 = o1;
164 		v1 = sh_cmt_read_cmcnt(p);
165 		v2 = sh_cmt_read_cmcnt(p);
166 		v3 = sh_cmt_read_cmcnt(p);
167 		o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
168 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
169 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
170 
171 	*has_wrapped = o1;
172 	return v2;
173 }
174 
175 static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
176 
177 static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
178 {
179 	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
180 	unsigned long flags, value;
181 
182 	/* start stop register shared by multiple timer channels */
183 	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
184 	value = sh_cmt_read_cmstr(p);
185 
186 	if (start)
187 		value |= 1 << cfg->timer_bit;
188 	else
189 		value &= ~(1 << cfg->timer_bit);
190 
191 	sh_cmt_write_cmstr(p, value);
192 	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
193 }
194 
195 static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
196 {
197 	int k, ret;
198 
199 	pm_runtime_get_sync(&p->pdev->dev);
200 	dev_pm_syscore_device(&p->pdev->dev, true);
201 
202 	/* enable clock */
203 	ret = clk_enable(p->clk);
204 	if (ret) {
205 		dev_err(&p->pdev->dev, "cannot enable clock\n");
206 		goto err0;
207 	}
208 
209 	/* make sure channel is disabled */
210 	sh_cmt_start_stop_ch(p, 0);
211 
212 	/* configure channel, periodic mode and maximum timeout */
213 	if (p->width == 16) {
214 		*rate = clk_get_rate(p->clk) / 512;
215 		sh_cmt_write_cmcsr(p, 0x43);
216 	} else {
217 		*rate = clk_get_rate(p->clk) / 8;
218 		sh_cmt_write_cmcsr(p, 0x01a4);
219 	}
220 
221 	sh_cmt_write_cmcor(p, 0xffffffff);
222 	sh_cmt_write_cmcnt(p, 0);
223 
224 	/*
225 	 * According to the sh73a0 user's manual, as CMCNT can be operated
226 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
227 	 * modifying CMCNT register; two RCLK cycles are necessary before
228 	 * this register is either read or any modification of the value
229 	 * it holds is reflected in the LSI's actual operation.
230 	 *
231 	 * While at it, we're supposed to clear out the CMCNT as of this
232 	 * moment, so make sure it's processed properly here.  This will
233 	 * take RCLKx2 at maximum.
234 	 */
235 	for (k = 0; k < 100; k++) {
236 		if (!sh_cmt_read_cmcnt(p))
237 			break;
238 		udelay(1);
239 	}
240 
241 	if (sh_cmt_read_cmcnt(p)) {
242 		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
243 		ret = -ETIMEDOUT;
244 		goto err1;
245 	}
246 
247 	/* enable channel */
248 	sh_cmt_start_stop_ch(p, 1);
249 	return 0;
250  err1:
251 	/* stop clock */
252 	clk_disable(p->clk);
253 
254  err0:
255 	return ret;
256 }
257 
258 static void sh_cmt_disable(struct sh_cmt_priv *p)
259 {
260 	/* disable channel */
261 	sh_cmt_start_stop_ch(p, 0);
262 
263 	/* disable interrupts in CMT block */
264 	sh_cmt_write_cmcsr(p, 0);
265 
266 	/* stop clock */
267 	clk_disable(p->clk);
268 
269 	dev_pm_syscore_device(&p->pdev->dev, false);
270 	pm_runtime_put(&p->pdev->dev);
271 }
272 
273 /* private flags */
274 #define FLAG_CLOCKEVENT (1 << 0)
275 #define FLAG_CLOCKSOURCE (1 << 1)
276 #define FLAG_REPROGRAM (1 << 2)
277 #define FLAG_SKIPEVENT (1 << 3)
278 #define FLAG_IRQCONTEXT (1 << 4)
279 
280 static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
281 					      int absolute)
282 {
283 	unsigned long new_match;
284 	unsigned long value = p->next_match_value;
285 	unsigned long delay = 0;
286 	unsigned long now = 0;
287 	int has_wrapped;
288 
289 	now = sh_cmt_get_counter(p, &has_wrapped);
290 	p->flags |= FLAG_REPROGRAM; /* force reprogram */
291 
292 	if (has_wrapped) {
293 		/* we're competing with the interrupt handler.
294 		 *  -> let the interrupt handler reprogram the timer.
295 		 *  -> interrupt number two handles the event.
296 		 */
297 		p->flags |= FLAG_SKIPEVENT;
298 		return;
299 	}
300 
301 	if (absolute)
302 		now = 0;
303 
304 	do {
305 		/* reprogram the timer hardware,
306 		 * but don't save the new match value yet.
307 		 */
308 		new_match = now + value + delay;
309 		if (new_match > p->max_match_value)
310 			new_match = p->max_match_value;
311 
312 		sh_cmt_write_cmcor(p, new_match);
313 
314 		now = sh_cmt_get_counter(p, &has_wrapped);
315 		if (has_wrapped && (new_match > p->match_value)) {
316 			/* we are changing to a greater match value,
317 			 * so this wrap must be caused by the counter
318 			 * matching the old value.
319 			 * -> first interrupt reprograms the timer.
320 			 * -> interrupt number two handles the event.
321 			 */
322 			p->flags |= FLAG_SKIPEVENT;
323 			break;
324 		}
325 
326 		if (has_wrapped) {
327 			/* we are changing to a smaller match value,
328 			 * so the wrap must be caused by the counter
329 			 * matching the new value.
330 			 * -> save programmed match value.
331 			 * -> let isr handle the event.
332 			 */
333 			p->match_value = new_match;
334 			break;
335 		}
336 
337 		/* be safe: verify hardware settings */
338 		if (now < new_match) {
339 			/* timer value is below match value, all good.
340 			 * this makes sure we won't miss any match events.
341 			 * -> save programmed match value.
342 			 * -> let isr handle the event.
343 			 */
344 			p->match_value = new_match;
345 			break;
346 		}
347 
348 		/* the counter has reached a value greater
349 		 * than our new match value. and since the
350 		 * has_wrapped flag isn't set we must have
351 		 * programmed a too close event.
352 		 * -> increase delay and retry.
353 		 */
354 		if (delay)
355 			delay <<= 1;
356 		else
357 			delay = 1;
358 
359 		if (!delay)
360 			dev_warn(&p->pdev->dev, "too long delay\n");
361 
362 	} while (delay);
363 }
364 
365 static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
366 {
367 	if (delta > p->max_match_value)
368 		dev_warn(&p->pdev->dev, "delta out of range\n");
369 
370 	p->next_match_value = delta;
371 	sh_cmt_clock_event_program_verify(p, 0);
372 }
373 
374 static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
375 {
376 	unsigned long flags;
377 
378 	raw_spin_lock_irqsave(&p->lock, flags);
379 	__sh_cmt_set_next(p, delta);
380 	raw_spin_unlock_irqrestore(&p->lock, flags);
381 }
382 
383 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
384 {
385 	struct sh_cmt_priv *p = dev_id;
386 
387 	/* clear flags */
388 	sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
389 
390 	/* update clock source counter to begin with if enabled
391 	 * the wrap flag should be cleared by the timer specific
392 	 * isr before we end up here.
393 	 */
394 	if (p->flags & FLAG_CLOCKSOURCE)
395 		p->total_cycles += p->match_value + 1;
396 
397 	if (!(p->flags & FLAG_REPROGRAM))
398 		p->next_match_value = p->max_match_value;
399 
400 	p->flags |= FLAG_IRQCONTEXT;
401 
402 	if (p->flags & FLAG_CLOCKEVENT) {
403 		if (!(p->flags & FLAG_SKIPEVENT)) {
404 			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
405 				p->next_match_value = p->max_match_value;
406 				p->flags |= FLAG_REPROGRAM;
407 			}
408 
409 			p->ced.event_handler(&p->ced);
410 		}
411 	}
412 
413 	p->flags &= ~FLAG_SKIPEVENT;
414 
415 	if (p->flags & FLAG_REPROGRAM) {
416 		p->flags &= ~FLAG_REPROGRAM;
417 		sh_cmt_clock_event_program_verify(p, 1);
418 
419 		if (p->flags & FLAG_CLOCKEVENT)
420 			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
421 			    || (p->match_value == p->next_match_value))
422 				p->flags &= ~FLAG_REPROGRAM;
423 	}
424 
425 	p->flags &= ~FLAG_IRQCONTEXT;
426 
427 	return IRQ_HANDLED;
428 }
429 
430 static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
431 {
432 	int ret = 0;
433 	unsigned long flags;
434 
435 	raw_spin_lock_irqsave(&p->lock, flags);
436 
437 	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
438 		ret = sh_cmt_enable(p, &p->rate);
439 
440 	if (ret)
441 		goto out;
442 	p->flags |= flag;
443 
444 	/* setup timeout if no clockevent */
445 	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
446 		__sh_cmt_set_next(p, p->max_match_value);
447  out:
448 	raw_spin_unlock_irqrestore(&p->lock, flags);
449 
450 	return ret;
451 }
452 
453 static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
454 {
455 	unsigned long flags;
456 	unsigned long f;
457 
458 	raw_spin_lock_irqsave(&p->lock, flags);
459 
460 	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
461 	p->flags &= ~flag;
462 
463 	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
464 		sh_cmt_disable(p);
465 
466 	/* adjust the timeout to maximum if only clocksource left */
467 	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
468 		__sh_cmt_set_next(p, p->max_match_value);
469 
470 	raw_spin_unlock_irqrestore(&p->lock, flags);
471 }
472 
473 static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
474 {
475 	return container_of(cs, struct sh_cmt_priv, cs);
476 }
477 
478 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
479 {
480 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
481 	unsigned long flags, raw;
482 	unsigned long value;
483 	int has_wrapped;
484 
485 	raw_spin_lock_irqsave(&p->lock, flags);
486 	value = p->total_cycles;
487 	raw = sh_cmt_get_counter(p, &has_wrapped);
488 
489 	if (unlikely(has_wrapped))
490 		raw += p->match_value + 1;
491 	raw_spin_unlock_irqrestore(&p->lock, flags);
492 
493 	return value + raw;
494 }
495 
496 static int sh_cmt_clocksource_enable(struct clocksource *cs)
497 {
498 	int ret;
499 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
500 
501 	WARN_ON(p->cs_enabled);
502 
503 	p->total_cycles = 0;
504 
505 	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
506 	if (!ret) {
507 		__clocksource_updatefreq_hz(cs, p->rate);
508 		p->cs_enabled = true;
509 	}
510 	return ret;
511 }
512 
513 static void sh_cmt_clocksource_disable(struct clocksource *cs)
514 {
515 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
516 
517 	WARN_ON(!p->cs_enabled);
518 
519 	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
520 	p->cs_enabled = false;
521 }
522 
523 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
524 {
525 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
526 
527 	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
528 	pm_genpd_syscore_poweroff(&p->pdev->dev);
529 }
530 
531 static void sh_cmt_clocksource_resume(struct clocksource *cs)
532 {
533 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
534 
535 	pm_genpd_syscore_poweron(&p->pdev->dev);
536 	sh_cmt_start(p, FLAG_CLOCKSOURCE);
537 }
538 
539 static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
540 				       char *name, unsigned long rating)
541 {
542 	struct clocksource *cs = &p->cs;
543 
544 	cs->name = name;
545 	cs->rating = rating;
546 	cs->read = sh_cmt_clocksource_read;
547 	cs->enable = sh_cmt_clocksource_enable;
548 	cs->disable = sh_cmt_clocksource_disable;
549 	cs->suspend = sh_cmt_clocksource_suspend;
550 	cs->resume = sh_cmt_clocksource_resume;
551 	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
552 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
553 
554 	dev_info(&p->pdev->dev, "used as clock source\n");
555 
556 	/* Register with dummy 1 Hz value, gets updated in ->enable() */
557 	clocksource_register_hz(cs, 1);
558 	return 0;
559 }
560 
561 static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
562 {
563 	return container_of(ced, struct sh_cmt_priv, ced);
564 }
565 
566 static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
567 {
568 	struct clock_event_device *ced = &p->ced;
569 
570 	sh_cmt_start(p, FLAG_CLOCKEVENT);
571 
572 	/* TODO: calculate good shift from rate and counter bit width */
573 
574 	ced->shift = 32;
575 	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
576 	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
577 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
578 
579 	if (periodic)
580 		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
581 	else
582 		sh_cmt_set_next(p, p->max_match_value);
583 }
584 
585 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
586 				    struct clock_event_device *ced)
587 {
588 	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
589 
590 	/* deal with old setting first */
591 	switch (ced->mode) {
592 	case CLOCK_EVT_MODE_PERIODIC:
593 	case CLOCK_EVT_MODE_ONESHOT:
594 		sh_cmt_stop(p, FLAG_CLOCKEVENT);
595 		break;
596 	default:
597 		break;
598 	}
599 
600 	switch (mode) {
601 	case CLOCK_EVT_MODE_PERIODIC:
602 		dev_info(&p->pdev->dev, "used for periodic clock events\n");
603 		sh_cmt_clock_event_start(p, 1);
604 		break;
605 	case CLOCK_EVT_MODE_ONESHOT:
606 		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
607 		sh_cmt_clock_event_start(p, 0);
608 		break;
609 	case CLOCK_EVT_MODE_SHUTDOWN:
610 	case CLOCK_EVT_MODE_UNUSED:
611 		sh_cmt_stop(p, FLAG_CLOCKEVENT);
612 		break;
613 	default:
614 		break;
615 	}
616 }
617 
618 static int sh_cmt_clock_event_next(unsigned long delta,
619 				   struct clock_event_device *ced)
620 {
621 	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
622 
623 	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
624 	if (likely(p->flags & FLAG_IRQCONTEXT))
625 		p->next_match_value = delta - 1;
626 	else
627 		sh_cmt_set_next(p, delta - 1);
628 
629 	return 0;
630 }
631 
632 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
633 {
634 	pm_genpd_syscore_poweroff(&ced_to_sh_cmt(ced)->pdev->dev);
635 }
636 
637 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
638 {
639 	pm_genpd_syscore_poweron(&ced_to_sh_cmt(ced)->pdev->dev);
640 }
641 
642 static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
643 				       char *name, unsigned long rating)
644 {
645 	struct clock_event_device *ced = &p->ced;
646 
647 	memset(ced, 0, sizeof(*ced));
648 
649 	ced->name = name;
650 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
651 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
652 	ced->rating = rating;
653 	ced->cpumask = cpumask_of(0);
654 	ced->set_next_event = sh_cmt_clock_event_next;
655 	ced->set_mode = sh_cmt_clock_event_mode;
656 	ced->suspend = sh_cmt_clock_event_suspend;
657 	ced->resume = sh_cmt_clock_event_resume;
658 
659 	dev_info(&p->pdev->dev, "used for clock events\n");
660 	clockevents_register_device(ced);
661 }
662 
663 static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
664 			   unsigned long clockevent_rating,
665 			   unsigned long clocksource_rating)
666 {
667 	if (clockevent_rating)
668 		sh_cmt_register_clockevent(p, name, clockevent_rating);
669 
670 	if (clocksource_rating)
671 		sh_cmt_register_clocksource(p, name, clocksource_rating);
672 
673 	return 0;
674 }
675 
676 static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
677 {
678 	struct sh_timer_config *cfg = pdev->dev.platform_data;
679 	struct resource *res;
680 	int irq, ret;
681 	ret = -ENXIO;
682 
683 	memset(p, 0, sizeof(*p));
684 	p->pdev = pdev;
685 
686 	if (!cfg) {
687 		dev_err(&p->pdev->dev, "missing platform data\n");
688 		goto err0;
689 	}
690 
691 	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
692 	if (!res) {
693 		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
694 		goto err0;
695 	}
696 
697 	irq = platform_get_irq(p->pdev, 0);
698 	if (irq < 0) {
699 		dev_err(&p->pdev->dev, "failed to get irq\n");
700 		goto err0;
701 	}
702 
703 	/* map memory, let mapbase point to our channel */
704 	p->mapbase = ioremap_nocache(res->start, resource_size(res));
705 	if (p->mapbase == NULL) {
706 		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
707 		goto err0;
708 	}
709 
710 	/* request irq using setup_irq() (too early for request_irq()) */
711 	p->irqaction.name = dev_name(&p->pdev->dev);
712 	p->irqaction.handler = sh_cmt_interrupt;
713 	p->irqaction.dev_id = p;
714 	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
715 			     IRQF_IRQPOLL  | IRQF_NOBALANCING;
716 
717 	/* get hold of clock */
718 	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
719 	if (IS_ERR(p->clk)) {
720 		dev_err(&p->pdev->dev, "cannot get clock\n");
721 		ret = PTR_ERR(p->clk);
722 		goto err1;
723 	}
724 
725 	p->read_control = sh_cmt_read16;
726 	p->write_control = sh_cmt_write16;
727 
728 	if (resource_size(res) == 6) {
729 		p->width = 16;
730 		p->read_count = sh_cmt_read16;
731 		p->write_count = sh_cmt_write16;
732 		p->overflow_bit = 0x80;
733 		p->clear_bits = ~0x80;
734 	} else {
735 		p->width = 32;
736 		p->read_count = sh_cmt_read32;
737 		p->write_count = sh_cmt_write32;
738 		p->overflow_bit = 0x8000;
739 		p->clear_bits = ~0xc000;
740 	}
741 
742 	if (p->width == (sizeof(p->max_match_value) * 8))
743 		p->max_match_value = ~0;
744 	else
745 		p->max_match_value = (1 << p->width) - 1;
746 
747 	p->match_value = p->max_match_value;
748 	raw_spin_lock_init(&p->lock);
749 
750 	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
751 			      cfg->clockevent_rating,
752 			      cfg->clocksource_rating);
753 	if (ret) {
754 		dev_err(&p->pdev->dev, "registration failed\n");
755 		goto err2;
756 	}
757 	p->cs_enabled = false;
758 
759 	ret = setup_irq(irq, &p->irqaction);
760 	if (ret) {
761 		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
762 		goto err2;
763 	}
764 
765 	platform_set_drvdata(pdev, p);
766 
767 	return 0;
768 err2:
769 	clk_put(p->clk);
770 
771 err1:
772 	iounmap(p->mapbase);
773 err0:
774 	return ret;
775 }
776 
777 static int sh_cmt_probe(struct platform_device *pdev)
778 {
779 	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
780 	struct sh_timer_config *cfg = pdev->dev.platform_data;
781 	int ret;
782 
783 	if (!is_early_platform_device(pdev)) {
784 		pm_runtime_set_active(&pdev->dev);
785 		pm_runtime_enable(&pdev->dev);
786 	}
787 
788 	if (p) {
789 		dev_info(&pdev->dev, "kept as earlytimer\n");
790 		goto out;
791 	}
792 
793 	p = kmalloc(sizeof(*p), GFP_KERNEL);
794 	if (p == NULL) {
795 		dev_err(&pdev->dev, "failed to allocate driver data\n");
796 		return -ENOMEM;
797 	}
798 
799 	ret = sh_cmt_setup(p, pdev);
800 	if (ret) {
801 		kfree(p);
802 		pm_runtime_idle(&pdev->dev);
803 		return ret;
804 	}
805 	if (is_early_platform_device(pdev))
806 		return 0;
807 
808  out:
809 	if (cfg->clockevent_rating || cfg->clocksource_rating)
810 		pm_runtime_irq_safe(&pdev->dev);
811 	else
812 		pm_runtime_idle(&pdev->dev);
813 
814 	return 0;
815 }
816 
817 static int sh_cmt_remove(struct platform_device *pdev)
818 {
819 	return -EBUSY; /* cannot unregister clockevent and clocksource */
820 }
821 
822 static struct platform_driver sh_cmt_device_driver = {
823 	.probe		= sh_cmt_probe,
824 	.remove		= sh_cmt_remove,
825 	.driver		= {
826 		.name	= "sh_cmt",
827 	}
828 };
829 
830 static int __init sh_cmt_init(void)
831 {
832 	return platform_driver_register(&sh_cmt_device_driver);
833 }
834 
835 static void __exit sh_cmt_exit(void)
836 {
837 	platform_driver_unregister(&sh_cmt_device_driver);
838 }
839 
840 early_platform_init("earlytimer", &sh_cmt_device_driver);
841 subsys_initcall(sh_cmt_init);
842 module_exit(sh_cmt_exit);
843 
844 MODULE_AUTHOR("Magnus Damm");
845 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
846 MODULE_LICENSE("GPL v2");
847