xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision 724ba675)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_domain.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sh_timer.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #ifdef CONFIG_SUPERH
30 #include <asm/platform_early.h>
31 #endif
32 
33 struct sh_cmt_device;
34 
35 /*
36  * The CMT comes in 5 different identified flavours, depending not only on the
37  * SoC but also on the particular instance. The following table lists the main
38  * characteristics of those flavours.
39  *
40  *			16B	32B	32B-F	48B	R-Car Gen2
41  * -----------------------------------------------------------------------------
42  * Channels		2	1/4	1	6	2/8
43  * Control Width	16	16	16	16	32
44  * Counter Width	16	32	32	32/48	32/48
45  * Shared Start/Stop	Y	Y	Y	Y	N
46  *
47  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
48  * located in the channel registers block. All other versions have a shared
49  * start/stop register located in the global space.
50  *
51  * Channels are indexed from 0 to N-1 in the documentation. The channel index
52  * infers the start/stop bit position in the control register and the channel
53  * registers block address. Some CMT instances have a subset of channels
54  * available, in which case the index in the documentation doesn't match the
55  * "real" index as implemented in hardware. This is for instance the case with
56  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
57  * in the documentation but using start/stop bit 5 and having its registers
58  * block at 0x60.
59  *
60  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
61  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
62  */
63 
64 enum sh_cmt_model {
65 	SH_CMT_16BIT,
66 	SH_CMT_32BIT,
67 	SH_CMT_48BIT,
68 	SH_CMT0_RCAR_GEN2,
69 	SH_CMT1_RCAR_GEN2,
70 };
71 
72 struct sh_cmt_info {
73 	enum sh_cmt_model model;
74 
75 	unsigned int channels_mask;
76 
77 	unsigned long width; /* 16 or 32 bit version of hardware block */
78 	u32 overflow_bit;
79 	u32 clear_bits;
80 
81 	/* callbacks for CMSTR and CMCSR access */
82 	u32 (*read_control)(void __iomem *base, unsigned long offs);
83 	void (*write_control)(void __iomem *base, unsigned long offs,
84 			      u32 value);
85 
86 	/* callbacks for CMCNT and CMCOR access */
87 	u32 (*read_count)(void __iomem *base, unsigned long offs);
88 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
89 };
90 
91 struct sh_cmt_channel {
92 	struct sh_cmt_device *cmt;
93 
94 	unsigned int index;	/* Index in the documentation */
95 	unsigned int hwidx;	/* Real hardware index */
96 
97 	void __iomem *iostart;
98 	void __iomem *ioctrl;
99 
100 	unsigned int timer_bit;
101 	unsigned long flags;
102 	u32 match_value;
103 	u32 next_match_value;
104 	u32 max_match_value;
105 	raw_spinlock_t lock;
106 	struct clock_event_device ced;
107 	struct clocksource cs;
108 	u64 total_cycles;
109 	bool cs_enabled;
110 };
111 
112 struct sh_cmt_device {
113 	struct platform_device *pdev;
114 
115 	const struct sh_cmt_info *info;
116 
117 	void __iomem *mapbase;
118 	struct clk *clk;
119 	unsigned long rate;
120 	unsigned int reg_delay;
121 
122 	raw_spinlock_t lock; /* Protect the shared start/stop register */
123 
124 	struct sh_cmt_channel *channels;
125 	unsigned int num_channels;
126 	unsigned int hw_channels;
127 
128 	bool has_clockevent;
129 	bool has_clocksource;
130 };
131 
132 #define SH_CMT16_CMCSR_CMF		(1 << 7)
133 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
134 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
135 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
136 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
137 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
139 
140 #define SH_CMT32_CMCSR_CMF		(1 << 15)
141 #define SH_CMT32_CMCSR_OVF		(1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
143 #define SH_CMT32_CMCSR_STTF		(1 << 12)
144 #define SH_CMT32_CMCSR_STPF		(1 << 11)
145 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
146 #define SH_CMT32_CMCSR_CMS		(1 << 9)
147 #define SH_CMT32_CMCSR_CMM		(1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
159 
160 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162 	return ioread16(base + (offs << 1));
163 }
164 
165 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167 	return ioread32(base + (offs << 2));
168 }
169 
170 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
171 {
172 	iowrite16(value, base + (offs << 1));
173 }
174 
175 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
176 {
177 	iowrite32(value, base + (offs << 2));
178 }
179 
180 static const struct sh_cmt_info sh_cmt_info[] = {
181 	[SH_CMT_16BIT] = {
182 		.model = SH_CMT_16BIT,
183 		.width = 16,
184 		.overflow_bit = SH_CMT16_CMCSR_CMF,
185 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
186 		.read_control = sh_cmt_read16,
187 		.write_control = sh_cmt_write16,
188 		.read_count = sh_cmt_read16,
189 		.write_count = sh_cmt_write16,
190 	},
191 	[SH_CMT_32BIT] = {
192 		.model = SH_CMT_32BIT,
193 		.width = 32,
194 		.overflow_bit = SH_CMT32_CMCSR_CMF,
195 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196 		.read_control = sh_cmt_read16,
197 		.write_control = sh_cmt_write16,
198 		.read_count = sh_cmt_read32,
199 		.write_count = sh_cmt_write32,
200 	},
201 	[SH_CMT_48BIT] = {
202 		.model = SH_CMT_48BIT,
203 		.channels_mask = 0x3f,
204 		.width = 32,
205 		.overflow_bit = SH_CMT32_CMCSR_CMF,
206 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
207 		.read_control = sh_cmt_read32,
208 		.write_control = sh_cmt_write32,
209 		.read_count = sh_cmt_read32,
210 		.write_count = sh_cmt_write32,
211 	},
212 	[SH_CMT0_RCAR_GEN2] = {
213 		.model = SH_CMT0_RCAR_GEN2,
214 		.channels_mask = 0x60,
215 		.width = 32,
216 		.overflow_bit = SH_CMT32_CMCSR_CMF,
217 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 		.read_control = sh_cmt_read32,
219 		.write_control = sh_cmt_write32,
220 		.read_count = sh_cmt_read32,
221 		.write_count = sh_cmt_write32,
222 	},
223 	[SH_CMT1_RCAR_GEN2] = {
224 		.model = SH_CMT1_RCAR_GEN2,
225 		.channels_mask = 0xff,
226 		.width = 32,
227 		.overflow_bit = SH_CMT32_CMCSR_CMF,
228 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
229 		.read_control = sh_cmt_read32,
230 		.write_control = sh_cmt_write32,
231 		.read_count = sh_cmt_read32,
232 		.write_count = sh_cmt_write32,
233 	},
234 };
235 
236 #define CMCSR 0 /* channel register */
237 #define CMCNT 1 /* channel register */
238 #define CMCOR 2 /* channel register */
239 
240 #define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
241 
242 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243 {
244 	if (ch->iostart)
245 		return ch->cmt->info->read_control(ch->iostart, 0);
246 	else
247 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248 }
249 
250 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251 {
252 	u32 old_value = sh_cmt_read_cmstr(ch);
253 
254 	if (value != old_value) {
255 		if (ch->iostart) {
256 			ch->cmt->info->write_control(ch->iostart, 0, value);
257 			udelay(ch->cmt->reg_delay);
258 		} else {
259 			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260 			udelay(ch->cmt->reg_delay);
261 		}
262 	}
263 }
264 
265 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
266 {
267 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
268 }
269 
270 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
271 {
272 	u32 old_value = sh_cmt_read_cmcsr(ch);
273 
274 	if (value != old_value) {
275 		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
276 		udelay(ch->cmt->reg_delay);
277 	}
278 }
279 
280 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
281 {
282 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
283 }
284 
285 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
286 {
287 	/* Tests showed that we need to wait 3 clocks here */
288 	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
289 	u32 reg;
290 
291 	if (ch->cmt->info->model > SH_CMT_16BIT) {
292 		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
293 						   !(reg & SH_CMT32_CMCSR_WRFLG),
294 						   1, cmcnt_delay, false, ch);
295 		if (ret < 0)
296 			return ret;
297 	}
298 
299 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
300 	udelay(cmcnt_delay);
301 	return 0;
302 }
303 
304 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
305 {
306 	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307 
308 	if (value != old_value) {
309 		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
310 		udelay(ch->cmt->reg_delay);
311 	}
312 }
313 
314 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
315 {
316 	u32 v1, v2, v3;
317 	u32 o1, o2;
318 
319 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
320 
321 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
322 	do {
323 		o2 = o1;
324 		v1 = sh_cmt_read_cmcnt(ch);
325 		v2 = sh_cmt_read_cmcnt(ch);
326 		v3 = sh_cmt_read_cmcnt(ch);
327 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
328 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
329 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
330 
331 	*has_wrapped = o1;
332 	return v2;
333 }
334 
335 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
336 {
337 	unsigned long flags;
338 	u32 value;
339 
340 	/* start stop register shared by multiple timer channels */
341 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
342 	value = sh_cmt_read_cmstr(ch);
343 
344 	if (start)
345 		value |= 1 << ch->timer_bit;
346 	else
347 		value &= ~(1 << ch->timer_bit);
348 
349 	sh_cmt_write_cmstr(ch, value);
350 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
351 }
352 
353 static int sh_cmt_enable(struct sh_cmt_channel *ch)
354 {
355 	int ret;
356 
357 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
358 
359 	/* enable clock */
360 	ret = clk_enable(ch->cmt->clk);
361 	if (ret) {
362 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
363 			ch->index);
364 		goto err0;
365 	}
366 
367 	/* make sure channel is disabled */
368 	sh_cmt_start_stop_ch(ch, 0);
369 
370 	/* configure channel, periodic mode and maximum timeout */
371 	if (ch->cmt->info->width == 16) {
372 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
373 				   SH_CMT16_CMCSR_CKS512);
374 	} else {
375 		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
376 			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
377 		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
378 				   SH_CMT32_CMCSR_CMR_IRQ |
379 				   SH_CMT32_CMCSR_CKS_RCLK8);
380 	}
381 
382 	sh_cmt_write_cmcor(ch, 0xffffffff);
383 	ret = sh_cmt_write_cmcnt(ch, 0);
384 
385 	if (ret || sh_cmt_read_cmcnt(ch)) {
386 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
387 			ch->index);
388 		ret = -ETIMEDOUT;
389 		goto err1;
390 	}
391 
392 	/* enable channel */
393 	sh_cmt_start_stop_ch(ch, 1);
394 	return 0;
395  err1:
396 	/* stop clock */
397 	clk_disable(ch->cmt->clk);
398 
399  err0:
400 	return ret;
401 }
402 
403 static void sh_cmt_disable(struct sh_cmt_channel *ch)
404 {
405 	/* disable channel */
406 	sh_cmt_start_stop_ch(ch, 0);
407 
408 	/* disable interrupts in CMT block */
409 	sh_cmt_write_cmcsr(ch, 0);
410 
411 	/* stop clock */
412 	clk_disable(ch->cmt->clk);
413 
414 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
415 }
416 
417 /* private flags */
418 #define FLAG_CLOCKEVENT (1 << 0)
419 #define FLAG_CLOCKSOURCE (1 << 1)
420 #define FLAG_REPROGRAM (1 << 2)
421 #define FLAG_SKIPEVENT (1 << 3)
422 #define FLAG_IRQCONTEXT (1 << 4)
423 
424 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
425 					      int absolute)
426 {
427 	u32 value = ch->next_match_value;
428 	u32 new_match;
429 	u32 delay = 0;
430 	u32 now = 0;
431 	u32 has_wrapped;
432 
433 	now = sh_cmt_get_counter(ch, &has_wrapped);
434 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
435 
436 	if (has_wrapped) {
437 		/* we're competing with the interrupt handler.
438 		 *  -> let the interrupt handler reprogram the timer.
439 		 *  -> interrupt number two handles the event.
440 		 */
441 		ch->flags |= FLAG_SKIPEVENT;
442 		return;
443 	}
444 
445 	if (absolute)
446 		now = 0;
447 
448 	do {
449 		/* reprogram the timer hardware,
450 		 * but don't save the new match value yet.
451 		 */
452 		new_match = now + value + delay;
453 		if (new_match > ch->max_match_value)
454 			new_match = ch->max_match_value;
455 
456 		sh_cmt_write_cmcor(ch, new_match);
457 
458 		now = sh_cmt_get_counter(ch, &has_wrapped);
459 		if (has_wrapped && (new_match > ch->match_value)) {
460 			/* we are changing to a greater match value,
461 			 * so this wrap must be caused by the counter
462 			 * matching the old value.
463 			 * -> first interrupt reprograms the timer.
464 			 * -> interrupt number two handles the event.
465 			 */
466 			ch->flags |= FLAG_SKIPEVENT;
467 			break;
468 		}
469 
470 		if (has_wrapped) {
471 			/* we are changing to a smaller match value,
472 			 * so the wrap must be caused by the counter
473 			 * matching the new value.
474 			 * -> save programmed match value.
475 			 * -> let isr handle the event.
476 			 */
477 			ch->match_value = new_match;
478 			break;
479 		}
480 
481 		/* be safe: verify hardware settings */
482 		if (now < new_match) {
483 			/* timer value is below match value, all good.
484 			 * this makes sure we won't miss any match events.
485 			 * -> save programmed match value.
486 			 * -> let isr handle the event.
487 			 */
488 			ch->match_value = new_match;
489 			break;
490 		}
491 
492 		/* the counter has reached a value greater
493 		 * than our new match value. and since the
494 		 * has_wrapped flag isn't set we must have
495 		 * programmed a too close event.
496 		 * -> increase delay and retry.
497 		 */
498 		if (delay)
499 			delay <<= 1;
500 		else
501 			delay = 1;
502 
503 		if (!delay)
504 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
505 				 ch->index);
506 
507 	} while (delay);
508 }
509 
510 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511 {
512 	if (delta > ch->max_match_value)
513 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
514 			 ch->index);
515 
516 	ch->next_match_value = delta;
517 	sh_cmt_clock_event_program_verify(ch, 0);
518 }
519 
520 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
521 {
522 	unsigned long flags;
523 
524 	raw_spin_lock_irqsave(&ch->lock, flags);
525 	__sh_cmt_set_next(ch, delta);
526 	raw_spin_unlock_irqrestore(&ch->lock, flags);
527 }
528 
529 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
530 {
531 	struct sh_cmt_channel *ch = dev_id;
532 
533 	/* clear flags */
534 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535 			   ch->cmt->info->clear_bits);
536 
537 	/* update clock source counter to begin with if enabled
538 	 * the wrap flag should be cleared by the timer specific
539 	 * isr before we end up here.
540 	 */
541 	if (ch->flags & FLAG_CLOCKSOURCE)
542 		ch->total_cycles += ch->match_value + 1;
543 
544 	if (!(ch->flags & FLAG_REPROGRAM))
545 		ch->next_match_value = ch->max_match_value;
546 
547 	ch->flags |= FLAG_IRQCONTEXT;
548 
549 	if (ch->flags & FLAG_CLOCKEVENT) {
550 		if (!(ch->flags & FLAG_SKIPEVENT)) {
551 			if (clockevent_state_oneshot(&ch->ced)) {
552 				ch->next_match_value = ch->max_match_value;
553 				ch->flags |= FLAG_REPROGRAM;
554 			}
555 
556 			ch->ced.event_handler(&ch->ced);
557 		}
558 	}
559 
560 	ch->flags &= ~FLAG_SKIPEVENT;
561 
562 	if (ch->flags & FLAG_REPROGRAM) {
563 		ch->flags &= ~FLAG_REPROGRAM;
564 		sh_cmt_clock_event_program_verify(ch, 1);
565 
566 		if (ch->flags & FLAG_CLOCKEVENT)
567 			if ((clockevent_state_shutdown(&ch->ced))
568 			    || (ch->match_value == ch->next_match_value))
569 				ch->flags &= ~FLAG_REPROGRAM;
570 	}
571 
572 	ch->flags &= ~FLAG_IRQCONTEXT;
573 
574 	return IRQ_HANDLED;
575 }
576 
577 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
578 {
579 	int ret = 0;
580 	unsigned long flags;
581 
582 	if (flag & FLAG_CLOCKSOURCE)
583 		pm_runtime_get_sync(&ch->cmt->pdev->dev);
584 
585 	raw_spin_lock_irqsave(&ch->lock, flags);
586 
587 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
588 		if (flag & FLAG_CLOCKEVENT)
589 			pm_runtime_get_sync(&ch->cmt->pdev->dev);
590 		ret = sh_cmt_enable(ch);
591 	}
592 
593 	if (ret)
594 		goto out;
595 	ch->flags |= flag;
596 
597 	/* setup timeout if no clockevent */
598 	if (ch->cmt->num_channels == 1 &&
599 	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
600 		__sh_cmt_set_next(ch, ch->max_match_value);
601  out:
602 	raw_spin_unlock_irqrestore(&ch->lock, flags);
603 
604 	return ret;
605 }
606 
607 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
608 {
609 	unsigned long flags;
610 	unsigned long f;
611 
612 	raw_spin_lock_irqsave(&ch->lock, flags);
613 
614 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
615 	ch->flags &= ~flag;
616 
617 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
618 		sh_cmt_disable(ch);
619 		if (flag & FLAG_CLOCKEVENT)
620 			pm_runtime_put(&ch->cmt->pdev->dev);
621 	}
622 
623 	/* adjust the timeout to maximum if only clocksource left */
624 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
625 		__sh_cmt_set_next(ch, ch->max_match_value);
626 
627 	raw_spin_unlock_irqrestore(&ch->lock, flags);
628 
629 	if (flag & FLAG_CLOCKSOURCE)
630 		pm_runtime_put(&ch->cmt->pdev->dev);
631 }
632 
633 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
634 {
635 	return container_of(cs, struct sh_cmt_channel, cs);
636 }
637 
638 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
639 {
640 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
641 	u32 has_wrapped;
642 
643 	if (ch->cmt->num_channels == 1) {
644 		unsigned long flags;
645 		u64 value;
646 		u32 raw;
647 
648 		raw_spin_lock_irqsave(&ch->lock, flags);
649 		value = ch->total_cycles;
650 		raw = sh_cmt_get_counter(ch, &has_wrapped);
651 
652 		if (unlikely(has_wrapped))
653 			raw += ch->match_value + 1;
654 		raw_spin_unlock_irqrestore(&ch->lock, flags);
655 
656 		return value + raw;
657 	}
658 
659 	return sh_cmt_get_counter(ch, &has_wrapped);
660 }
661 
662 static int sh_cmt_clocksource_enable(struct clocksource *cs)
663 {
664 	int ret;
665 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666 
667 	WARN_ON(ch->cs_enabled);
668 
669 	ch->total_cycles = 0;
670 
671 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
672 	if (!ret)
673 		ch->cs_enabled = true;
674 
675 	return ret;
676 }
677 
678 static void sh_cmt_clocksource_disable(struct clocksource *cs)
679 {
680 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
681 
682 	WARN_ON(!ch->cs_enabled);
683 
684 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
685 	ch->cs_enabled = false;
686 }
687 
688 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
689 {
690 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
691 
692 	if (!ch->cs_enabled)
693 		return;
694 
695 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
696 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
697 }
698 
699 static void sh_cmt_clocksource_resume(struct clocksource *cs)
700 {
701 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
702 
703 	if (!ch->cs_enabled)
704 		return;
705 
706 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
707 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
708 }
709 
710 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
711 				       const char *name)
712 {
713 	struct clocksource *cs = &ch->cs;
714 
715 	cs->name = name;
716 	cs->rating = 125;
717 	cs->read = sh_cmt_clocksource_read;
718 	cs->enable = sh_cmt_clocksource_enable;
719 	cs->disable = sh_cmt_clocksource_disable;
720 	cs->suspend = sh_cmt_clocksource_suspend;
721 	cs->resume = sh_cmt_clocksource_resume;
722 	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
723 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
724 
725 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
726 		 ch->index);
727 
728 	clocksource_register_hz(cs, ch->cmt->rate);
729 	return 0;
730 }
731 
732 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
733 {
734 	return container_of(ced, struct sh_cmt_channel, ced);
735 }
736 
737 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
738 {
739 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
740 
741 	if (periodic)
742 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
743 	else
744 		sh_cmt_set_next(ch, ch->max_match_value);
745 }
746 
747 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
748 {
749 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
750 
751 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752 	return 0;
753 }
754 
755 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
756 					int periodic)
757 {
758 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759 
760 	/* deal with old setting first */
761 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
762 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
763 
764 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
765 		 ch->index, periodic ? "periodic" : "oneshot");
766 	sh_cmt_clock_event_start(ch, periodic);
767 	return 0;
768 }
769 
770 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
771 {
772 	return sh_cmt_clock_event_set_state(ced, 0);
773 }
774 
775 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
776 {
777 	return sh_cmt_clock_event_set_state(ced, 1);
778 }
779 
780 static int sh_cmt_clock_event_next(unsigned long delta,
781 				   struct clock_event_device *ced)
782 {
783 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
784 
785 	BUG_ON(!clockevent_state_oneshot(ced));
786 	if (likely(ch->flags & FLAG_IRQCONTEXT))
787 		ch->next_match_value = delta - 1;
788 	else
789 		sh_cmt_set_next(ch, delta - 1);
790 
791 	return 0;
792 }
793 
794 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
795 {
796 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
797 
798 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
799 	clk_unprepare(ch->cmt->clk);
800 }
801 
802 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
803 {
804 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
805 
806 	clk_prepare(ch->cmt->clk);
807 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
808 }
809 
810 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
811 				      const char *name)
812 {
813 	struct clock_event_device *ced = &ch->ced;
814 	int irq;
815 	int ret;
816 
817 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
818 	if (irq < 0)
819 		return irq;
820 
821 	ret = request_irq(irq, sh_cmt_interrupt,
822 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
823 			  dev_name(&ch->cmt->pdev->dev), ch);
824 	if (ret) {
825 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
826 			ch->index, irq);
827 		return ret;
828 	}
829 
830 	ced->name = name;
831 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
832 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
833 	ced->rating = 125;
834 	ced->cpumask = cpu_possible_mask;
835 	ced->set_next_event = sh_cmt_clock_event_next;
836 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
837 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
838 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
839 	ced->suspend = sh_cmt_clock_event_suspend;
840 	ced->resume = sh_cmt_clock_event_resume;
841 
842 	/* TODO: calculate good shift from rate and counter bit width */
843 	ced->shift = 32;
844 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
845 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
846 	ced->max_delta_ticks = ch->max_match_value;
847 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
848 	ced->min_delta_ticks = 0x1f;
849 
850 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
851 		 ch->index);
852 	clockevents_register_device(ced);
853 
854 	return 0;
855 }
856 
857 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
858 			   bool clockevent, bool clocksource)
859 {
860 	int ret;
861 
862 	if (clockevent) {
863 		ch->cmt->has_clockevent = true;
864 		ret = sh_cmt_register_clockevent(ch, name);
865 		if (ret < 0)
866 			return ret;
867 	}
868 
869 	if (clocksource) {
870 		ch->cmt->has_clocksource = true;
871 		sh_cmt_register_clocksource(ch, name);
872 	}
873 
874 	return 0;
875 }
876 
877 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
878 				unsigned int hwidx, bool clockevent,
879 				bool clocksource, struct sh_cmt_device *cmt)
880 {
881 	u32 value;
882 	int ret;
883 
884 	/* Skip unused channels. */
885 	if (!clockevent && !clocksource)
886 		return 0;
887 
888 	ch->cmt = cmt;
889 	ch->index = index;
890 	ch->hwidx = hwidx;
891 	ch->timer_bit = hwidx;
892 
893 	/*
894 	 * Compute the address of the channel control register block. For the
895 	 * timers with a per-channel start/stop register, compute its address
896 	 * as well.
897 	 */
898 	switch (cmt->info->model) {
899 	case SH_CMT_16BIT:
900 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
901 		break;
902 	case SH_CMT_32BIT:
903 	case SH_CMT_48BIT:
904 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
905 		break;
906 	case SH_CMT0_RCAR_GEN2:
907 	case SH_CMT1_RCAR_GEN2:
908 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
909 		ch->ioctrl = ch->iostart + 0x10;
910 		ch->timer_bit = 0;
911 
912 		/* Enable the clock supply to the channel */
913 		value = ioread32(cmt->mapbase + CMCLKE);
914 		value |= BIT(hwidx);
915 		iowrite32(value, cmt->mapbase + CMCLKE);
916 		break;
917 	}
918 
919 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
920 		ch->max_match_value = ~0;
921 	else
922 		ch->max_match_value = (1 << cmt->info->width) - 1;
923 
924 	ch->match_value = ch->max_match_value;
925 	raw_spin_lock_init(&ch->lock);
926 
927 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
928 			      clockevent, clocksource);
929 	if (ret) {
930 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
931 			ch->index);
932 		return ret;
933 	}
934 	ch->cs_enabled = false;
935 
936 	return 0;
937 }
938 
939 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
940 {
941 	struct resource *mem;
942 
943 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
944 	if (!mem) {
945 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
946 		return -ENXIO;
947 	}
948 
949 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
950 	if (cmt->mapbase == NULL) {
951 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
952 		return -ENXIO;
953 	}
954 
955 	return 0;
956 }
957 
958 static const struct platform_device_id sh_cmt_id_table[] = {
959 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
960 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
961 	{ }
962 };
963 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
964 
965 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
966 	{
967 		/* deprecated, preserved for backward compatibility */
968 		.compatible = "renesas,cmt-48",
969 		.data = &sh_cmt_info[SH_CMT_48BIT]
970 	},
971 	{
972 		/* deprecated, preserved for backward compatibility */
973 		.compatible = "renesas,cmt-48-gen2",
974 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
975 	},
976 	{
977 		.compatible = "renesas,r8a7740-cmt1",
978 		.data = &sh_cmt_info[SH_CMT_48BIT]
979 	},
980 	{
981 		.compatible = "renesas,sh73a0-cmt1",
982 		.data = &sh_cmt_info[SH_CMT_48BIT]
983 	},
984 	{
985 		.compatible = "renesas,rcar-gen2-cmt0",
986 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
987 	},
988 	{
989 		.compatible = "renesas,rcar-gen2-cmt1",
990 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
991 	},
992 	{
993 		.compatible = "renesas,rcar-gen3-cmt0",
994 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
995 	},
996 	{
997 		.compatible = "renesas,rcar-gen3-cmt1",
998 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
999 	},
1000 	{
1001 		.compatible = "renesas,rcar-gen4-cmt0",
1002 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1003 	},
1004 	{
1005 		.compatible = "renesas,rcar-gen4-cmt1",
1006 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1007 	},
1008 	{ }
1009 };
1010 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011 
1012 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013 {
1014 	unsigned int mask, i;
1015 	unsigned long rate;
1016 	int ret;
1017 
1018 	cmt->pdev = pdev;
1019 	raw_spin_lock_init(&cmt->lock);
1020 
1021 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1022 		cmt->info = of_device_get_match_data(&pdev->dev);
1023 		cmt->hw_channels = cmt->info->channels_mask;
1024 	} else if (pdev->dev.platform_data) {
1025 		struct sh_timer_config *cfg = pdev->dev.platform_data;
1026 		const struct platform_device_id *id = pdev->id_entry;
1027 
1028 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029 		cmt->hw_channels = cfg->channels_mask;
1030 	} else {
1031 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1032 		return -ENXIO;
1033 	}
1034 
1035 	/* Get hold of clock. */
1036 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1037 	if (IS_ERR(cmt->clk)) {
1038 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1039 		return PTR_ERR(cmt->clk);
1040 	}
1041 
1042 	ret = clk_prepare(cmt->clk);
1043 	if (ret < 0)
1044 		goto err_clk_put;
1045 
1046 	/* Determine clock rate. */
1047 	ret = clk_enable(cmt->clk);
1048 	if (ret < 0)
1049 		goto err_clk_unprepare;
1050 
1051 	rate = clk_get_rate(cmt->clk);
1052 	if (!rate) {
1053 		ret = -EINVAL;
1054 		goto err_clk_disable;
1055 	}
1056 
1057 	/* We shall wait 2 input clks after register writes */
1058 	if (cmt->info->model >= SH_CMT_48BIT)
1059 		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060 	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1061 
1062 	/* Map the memory resource(s). */
1063 	ret = sh_cmt_map_memory(cmt);
1064 	if (ret < 0)
1065 		goto err_clk_disable;
1066 
1067 	/* Allocate and setup the channels. */
1068 	cmt->num_channels = hweight8(cmt->hw_channels);
1069 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1070 				GFP_KERNEL);
1071 	if (cmt->channels == NULL) {
1072 		ret = -ENOMEM;
1073 		goto err_unmap;
1074 	}
1075 
1076 	/*
1077 	 * Use the first channel as a clock event device and the second channel
1078 	 * as a clock source. If only one channel is available use it for both.
1079 	 */
1080 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1081 		unsigned int hwidx = ffs(mask) - 1;
1082 		bool clocksource = i == 1 || cmt->num_channels == 1;
1083 		bool clockevent = i == 0;
1084 
1085 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086 					   clockevent, clocksource, cmt);
1087 		if (ret < 0)
1088 			goto err_unmap;
1089 
1090 		mask &= ~(1 << hwidx);
1091 	}
1092 
1093 	clk_disable(cmt->clk);
1094 
1095 	platform_set_drvdata(pdev, cmt);
1096 
1097 	return 0;
1098 
1099 err_unmap:
1100 	kfree(cmt->channels);
1101 	iounmap(cmt->mapbase);
1102 err_clk_disable:
1103 	clk_disable(cmt->clk);
1104 err_clk_unprepare:
1105 	clk_unprepare(cmt->clk);
1106 err_clk_put:
1107 	clk_put(cmt->clk);
1108 	return ret;
1109 }
1110 
1111 static int sh_cmt_probe(struct platform_device *pdev)
1112 {
1113 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1114 	int ret;
1115 
1116 	if (!is_sh_early_platform_device(pdev)) {
1117 		pm_runtime_set_active(&pdev->dev);
1118 		pm_runtime_enable(&pdev->dev);
1119 	}
1120 
1121 	if (cmt) {
1122 		dev_info(&pdev->dev, "kept as earlytimer\n");
1123 		goto out;
1124 	}
1125 
1126 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1127 	if (cmt == NULL)
1128 		return -ENOMEM;
1129 
1130 	ret = sh_cmt_setup(cmt, pdev);
1131 	if (ret) {
1132 		kfree(cmt);
1133 		pm_runtime_idle(&pdev->dev);
1134 		return ret;
1135 	}
1136 	if (is_sh_early_platform_device(pdev))
1137 		return 0;
1138 
1139  out:
1140 	if (cmt->has_clockevent || cmt->has_clocksource)
1141 		pm_runtime_irq_safe(&pdev->dev);
1142 	else
1143 		pm_runtime_idle(&pdev->dev);
1144 
1145 	return 0;
1146 }
1147 
1148 static struct platform_driver sh_cmt_device_driver = {
1149 	.probe		= sh_cmt_probe,
1150 	.driver		= {
1151 		.name	= "sh_cmt",
1152 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1153 		.suppress_bind_attrs = true,
1154 	},
1155 	.id_table	= sh_cmt_id_table,
1156 };
1157 
1158 static int __init sh_cmt_init(void)
1159 {
1160 	return platform_driver_register(&sh_cmt_device_driver);
1161 }
1162 
1163 static void __exit sh_cmt_exit(void)
1164 {
1165 	platform_driver_unregister(&sh_cmt_device_driver);
1166 }
1167 
1168 #ifdef CONFIG_SUPERH
1169 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1170 #endif
1171 
1172 subsys_initcall(sh_cmt_init);
1173 module_exit(sh_cmt_exit);
1174 
1175 MODULE_AUTHOR("Magnus Damm");
1176 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1177