xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 struct sh_cmt_device;
29 
30 /*
31  * The CMT comes in 5 different identified flavours, depending not only on the
32  * SoC but also on the particular instance. The following table lists the main
33  * characteristics of those flavours.
34  *
35  *			16B	32B	32B-F	48B	R-Car Gen2
36  * -----------------------------------------------------------------------------
37  * Channels		2	1/4	1	6	2/8
38  * Control Width	16	16	16	16	32
39  * Counter Width	16	32	32	32/48	32/48
40  * Shared Start/Stop	Y	Y	Y	Y	N
41  *
42  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
43  * located in the channel registers block. All other versions have a shared
44  * start/stop register located in the global space.
45  *
46  * Channels are indexed from 0 to N-1 in the documentation. The channel index
47  * infers the start/stop bit position in the control register and the channel
48  * registers block address. Some CMT instances have a subset of channels
49  * available, in which case the index in the documentation doesn't match the
50  * "real" index as implemented in hardware. This is for instance the case with
51  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
52  * in the documentation but using start/stop bit 5 and having its registers
53  * block at 0x60.
54  *
55  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
56  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
57  */
58 
59 enum sh_cmt_model {
60 	SH_CMT_16BIT,
61 	SH_CMT_32BIT,
62 	SH_CMT_48BIT,
63 	SH_CMT0_RCAR_GEN2,
64 	SH_CMT1_RCAR_GEN2,
65 };
66 
67 struct sh_cmt_info {
68 	enum sh_cmt_model model;
69 
70 	unsigned int channels_mask;
71 
72 	unsigned long width; /* 16 or 32 bit version of hardware block */
73 	u32 overflow_bit;
74 	u32 clear_bits;
75 
76 	/* callbacks for CMSTR and CMCSR access */
77 	u32 (*read_control)(void __iomem *base, unsigned long offs);
78 	void (*write_control)(void __iomem *base, unsigned long offs,
79 			      u32 value);
80 
81 	/* callbacks for CMCNT and CMCOR access */
82 	u32 (*read_count)(void __iomem *base, unsigned long offs);
83 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
84 };
85 
86 struct sh_cmt_channel {
87 	struct sh_cmt_device *cmt;
88 
89 	unsigned int index;	/* Index in the documentation */
90 	unsigned int hwidx;	/* Real hardware index */
91 
92 	void __iomem *iostart;
93 	void __iomem *ioctrl;
94 
95 	unsigned int timer_bit;
96 	unsigned long flags;
97 	u32 match_value;
98 	u32 next_match_value;
99 	u32 max_match_value;
100 	raw_spinlock_t lock;
101 	struct clock_event_device ced;
102 	struct clocksource cs;
103 	u64 total_cycles;
104 	bool cs_enabled;
105 };
106 
107 struct sh_cmt_device {
108 	struct platform_device *pdev;
109 
110 	const struct sh_cmt_info *info;
111 
112 	void __iomem *mapbase;
113 	struct clk *clk;
114 	unsigned long rate;
115 
116 	raw_spinlock_t lock; /* Protect the shared start/stop register */
117 
118 	struct sh_cmt_channel *channels;
119 	unsigned int num_channels;
120 	unsigned int hw_channels;
121 
122 	bool has_clockevent;
123 	bool has_clocksource;
124 };
125 
126 #define SH_CMT16_CMCSR_CMF		(1 << 7)
127 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
128 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
129 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
130 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
131 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
132 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
133 
134 #define SH_CMT32_CMCSR_CMF		(1 << 15)
135 #define SH_CMT32_CMCSR_OVF		(1 << 14)
136 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
137 #define SH_CMT32_CMCSR_STTF		(1 << 12)
138 #define SH_CMT32_CMCSR_STPF		(1 << 11)
139 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
140 #define SH_CMT32_CMCSR_CMS		(1 << 9)
141 #define SH_CMT32_CMCSR_CMM		(1 << 8)
142 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
143 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
144 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
145 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
146 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
147 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
148 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
149 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
150 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
151 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
152 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
153 
154 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
155 {
156 	return ioread16(base + (offs << 1));
157 }
158 
159 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
160 {
161 	return ioread32(base + (offs << 2));
162 }
163 
164 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
165 {
166 	iowrite16(value, base + (offs << 1));
167 }
168 
169 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
170 {
171 	iowrite32(value, base + (offs << 2));
172 }
173 
174 static const struct sh_cmt_info sh_cmt_info[] = {
175 	[SH_CMT_16BIT] = {
176 		.model = SH_CMT_16BIT,
177 		.width = 16,
178 		.overflow_bit = SH_CMT16_CMCSR_CMF,
179 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
180 		.read_control = sh_cmt_read16,
181 		.write_control = sh_cmt_write16,
182 		.read_count = sh_cmt_read16,
183 		.write_count = sh_cmt_write16,
184 	},
185 	[SH_CMT_32BIT] = {
186 		.model = SH_CMT_32BIT,
187 		.width = 32,
188 		.overflow_bit = SH_CMT32_CMCSR_CMF,
189 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
190 		.read_control = sh_cmt_read16,
191 		.write_control = sh_cmt_write16,
192 		.read_count = sh_cmt_read32,
193 		.write_count = sh_cmt_write32,
194 	},
195 	[SH_CMT_48BIT] = {
196 		.model = SH_CMT_48BIT,
197 		.channels_mask = 0x3f,
198 		.width = 32,
199 		.overflow_bit = SH_CMT32_CMCSR_CMF,
200 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
201 		.read_control = sh_cmt_read32,
202 		.write_control = sh_cmt_write32,
203 		.read_count = sh_cmt_read32,
204 		.write_count = sh_cmt_write32,
205 	},
206 	[SH_CMT0_RCAR_GEN2] = {
207 		.model = SH_CMT0_RCAR_GEN2,
208 		.channels_mask = 0x60,
209 		.width = 32,
210 		.overflow_bit = SH_CMT32_CMCSR_CMF,
211 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
212 		.read_control = sh_cmt_read32,
213 		.write_control = sh_cmt_write32,
214 		.read_count = sh_cmt_read32,
215 		.write_count = sh_cmt_write32,
216 	},
217 	[SH_CMT1_RCAR_GEN2] = {
218 		.model = SH_CMT1_RCAR_GEN2,
219 		.channels_mask = 0xff,
220 		.width = 32,
221 		.overflow_bit = SH_CMT32_CMCSR_CMF,
222 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
223 		.read_control = sh_cmt_read32,
224 		.write_control = sh_cmt_write32,
225 		.read_count = sh_cmt_read32,
226 		.write_count = sh_cmt_write32,
227 	},
228 };
229 
230 #define CMCSR 0 /* channel register */
231 #define CMCNT 1 /* channel register */
232 #define CMCOR 2 /* channel register */
233 
234 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
235 {
236 	if (ch->iostart)
237 		return ch->cmt->info->read_control(ch->iostart, 0);
238 	else
239 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
240 }
241 
242 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
243 {
244 	if (ch->iostart)
245 		ch->cmt->info->write_control(ch->iostart, 0, value);
246 	else
247 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
248 }
249 
250 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
251 {
252 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
253 }
254 
255 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
256 {
257 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
258 }
259 
260 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
261 {
262 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
263 }
264 
265 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
266 {
267 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
268 }
269 
270 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
271 {
272 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
273 }
274 
275 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
276 {
277 	u32 v1, v2, v3;
278 	u32 o1, o2;
279 
280 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
281 
282 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
283 	do {
284 		o2 = o1;
285 		v1 = sh_cmt_read_cmcnt(ch);
286 		v2 = sh_cmt_read_cmcnt(ch);
287 		v3 = sh_cmt_read_cmcnt(ch);
288 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
290 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
291 
292 	*has_wrapped = o1;
293 	return v2;
294 }
295 
296 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
297 {
298 	unsigned long flags;
299 	u32 value;
300 
301 	/* start stop register shared by multiple timer channels */
302 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
303 	value = sh_cmt_read_cmstr(ch);
304 
305 	if (start)
306 		value |= 1 << ch->timer_bit;
307 	else
308 		value &= ~(1 << ch->timer_bit);
309 
310 	sh_cmt_write_cmstr(ch, value);
311 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
312 }
313 
314 static int sh_cmt_enable(struct sh_cmt_channel *ch)
315 {
316 	int k, ret;
317 
318 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
319 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
320 
321 	/* enable clock */
322 	ret = clk_enable(ch->cmt->clk);
323 	if (ret) {
324 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
325 			ch->index);
326 		goto err0;
327 	}
328 
329 	/* make sure channel is disabled */
330 	sh_cmt_start_stop_ch(ch, 0);
331 
332 	/* configure channel, periodic mode and maximum timeout */
333 	if (ch->cmt->info->width == 16) {
334 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
335 				   SH_CMT16_CMCSR_CKS512);
336 	} else {
337 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
338 				   SH_CMT32_CMCSR_CMTOUT_IE |
339 				   SH_CMT32_CMCSR_CMR_IRQ |
340 				   SH_CMT32_CMCSR_CKS_RCLK8);
341 	}
342 
343 	sh_cmt_write_cmcor(ch, 0xffffffff);
344 	sh_cmt_write_cmcnt(ch, 0);
345 
346 	/*
347 	 * According to the sh73a0 user's manual, as CMCNT can be operated
348 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
349 	 * modifying CMCNT register; two RCLK cycles are necessary before
350 	 * this register is either read or any modification of the value
351 	 * it holds is reflected in the LSI's actual operation.
352 	 *
353 	 * While at it, we're supposed to clear out the CMCNT as of this
354 	 * moment, so make sure it's processed properly here.  This will
355 	 * take RCLKx2 at maximum.
356 	 */
357 	for (k = 0; k < 100; k++) {
358 		if (!sh_cmt_read_cmcnt(ch))
359 			break;
360 		udelay(1);
361 	}
362 
363 	if (sh_cmt_read_cmcnt(ch)) {
364 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
365 			ch->index);
366 		ret = -ETIMEDOUT;
367 		goto err1;
368 	}
369 
370 	/* enable channel */
371 	sh_cmt_start_stop_ch(ch, 1);
372 	return 0;
373  err1:
374 	/* stop clock */
375 	clk_disable(ch->cmt->clk);
376 
377  err0:
378 	return ret;
379 }
380 
381 static void sh_cmt_disable(struct sh_cmt_channel *ch)
382 {
383 	/* disable channel */
384 	sh_cmt_start_stop_ch(ch, 0);
385 
386 	/* disable interrupts in CMT block */
387 	sh_cmt_write_cmcsr(ch, 0);
388 
389 	/* stop clock */
390 	clk_disable(ch->cmt->clk);
391 
392 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
393 	pm_runtime_put(&ch->cmt->pdev->dev);
394 }
395 
396 /* private flags */
397 #define FLAG_CLOCKEVENT (1 << 0)
398 #define FLAG_CLOCKSOURCE (1 << 1)
399 #define FLAG_REPROGRAM (1 << 2)
400 #define FLAG_SKIPEVENT (1 << 3)
401 #define FLAG_IRQCONTEXT (1 << 4)
402 
403 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
404 					      int absolute)
405 {
406 	u32 value = ch->next_match_value;
407 	u32 new_match;
408 	u32 delay = 0;
409 	u32 now = 0;
410 	u32 has_wrapped;
411 
412 	now = sh_cmt_get_counter(ch, &has_wrapped);
413 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
414 
415 	if (has_wrapped) {
416 		/* we're competing with the interrupt handler.
417 		 *  -> let the interrupt handler reprogram the timer.
418 		 *  -> interrupt number two handles the event.
419 		 */
420 		ch->flags |= FLAG_SKIPEVENT;
421 		return;
422 	}
423 
424 	if (absolute)
425 		now = 0;
426 
427 	do {
428 		/* reprogram the timer hardware,
429 		 * but don't save the new match value yet.
430 		 */
431 		new_match = now + value + delay;
432 		if (new_match > ch->max_match_value)
433 			new_match = ch->max_match_value;
434 
435 		sh_cmt_write_cmcor(ch, new_match);
436 
437 		now = sh_cmt_get_counter(ch, &has_wrapped);
438 		if (has_wrapped && (new_match > ch->match_value)) {
439 			/* we are changing to a greater match value,
440 			 * so this wrap must be caused by the counter
441 			 * matching the old value.
442 			 * -> first interrupt reprograms the timer.
443 			 * -> interrupt number two handles the event.
444 			 */
445 			ch->flags |= FLAG_SKIPEVENT;
446 			break;
447 		}
448 
449 		if (has_wrapped) {
450 			/* we are changing to a smaller match value,
451 			 * so the wrap must be caused by the counter
452 			 * matching the new value.
453 			 * -> save programmed match value.
454 			 * -> let isr handle the event.
455 			 */
456 			ch->match_value = new_match;
457 			break;
458 		}
459 
460 		/* be safe: verify hardware settings */
461 		if (now < new_match) {
462 			/* timer value is below match value, all good.
463 			 * this makes sure we won't miss any match events.
464 			 * -> save programmed match value.
465 			 * -> let isr handle the event.
466 			 */
467 			ch->match_value = new_match;
468 			break;
469 		}
470 
471 		/* the counter has reached a value greater
472 		 * than our new match value. and since the
473 		 * has_wrapped flag isn't set we must have
474 		 * programmed a too close event.
475 		 * -> increase delay and retry.
476 		 */
477 		if (delay)
478 			delay <<= 1;
479 		else
480 			delay = 1;
481 
482 		if (!delay)
483 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
484 				 ch->index);
485 
486 	} while (delay);
487 }
488 
489 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
490 {
491 	if (delta > ch->max_match_value)
492 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
493 			 ch->index);
494 
495 	ch->next_match_value = delta;
496 	sh_cmt_clock_event_program_verify(ch, 0);
497 }
498 
499 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
500 {
501 	unsigned long flags;
502 
503 	raw_spin_lock_irqsave(&ch->lock, flags);
504 	__sh_cmt_set_next(ch, delta);
505 	raw_spin_unlock_irqrestore(&ch->lock, flags);
506 }
507 
508 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
509 {
510 	struct sh_cmt_channel *ch = dev_id;
511 
512 	/* clear flags */
513 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
514 			   ch->cmt->info->clear_bits);
515 
516 	/* update clock source counter to begin with if enabled
517 	 * the wrap flag should be cleared by the timer specific
518 	 * isr before we end up here.
519 	 */
520 	if (ch->flags & FLAG_CLOCKSOURCE)
521 		ch->total_cycles += ch->match_value + 1;
522 
523 	if (!(ch->flags & FLAG_REPROGRAM))
524 		ch->next_match_value = ch->max_match_value;
525 
526 	ch->flags |= FLAG_IRQCONTEXT;
527 
528 	if (ch->flags & FLAG_CLOCKEVENT) {
529 		if (!(ch->flags & FLAG_SKIPEVENT)) {
530 			if (clockevent_state_oneshot(&ch->ced)) {
531 				ch->next_match_value = ch->max_match_value;
532 				ch->flags |= FLAG_REPROGRAM;
533 			}
534 
535 			ch->ced.event_handler(&ch->ced);
536 		}
537 	}
538 
539 	ch->flags &= ~FLAG_SKIPEVENT;
540 
541 	if (ch->flags & FLAG_REPROGRAM) {
542 		ch->flags &= ~FLAG_REPROGRAM;
543 		sh_cmt_clock_event_program_verify(ch, 1);
544 
545 		if (ch->flags & FLAG_CLOCKEVENT)
546 			if ((clockevent_state_shutdown(&ch->ced))
547 			    || (ch->match_value == ch->next_match_value))
548 				ch->flags &= ~FLAG_REPROGRAM;
549 	}
550 
551 	ch->flags &= ~FLAG_IRQCONTEXT;
552 
553 	return IRQ_HANDLED;
554 }
555 
556 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
557 {
558 	int ret = 0;
559 	unsigned long flags;
560 
561 	raw_spin_lock_irqsave(&ch->lock, flags);
562 
563 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
564 		ret = sh_cmt_enable(ch);
565 
566 	if (ret)
567 		goto out;
568 	ch->flags |= flag;
569 
570 	/* setup timeout if no clockevent */
571 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
572 		__sh_cmt_set_next(ch, ch->max_match_value);
573  out:
574 	raw_spin_unlock_irqrestore(&ch->lock, flags);
575 
576 	return ret;
577 }
578 
579 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
580 {
581 	unsigned long flags;
582 	unsigned long f;
583 
584 	raw_spin_lock_irqsave(&ch->lock, flags);
585 
586 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
587 	ch->flags &= ~flag;
588 
589 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
590 		sh_cmt_disable(ch);
591 
592 	/* adjust the timeout to maximum if only clocksource left */
593 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
594 		__sh_cmt_set_next(ch, ch->max_match_value);
595 
596 	raw_spin_unlock_irqrestore(&ch->lock, flags);
597 }
598 
599 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
600 {
601 	return container_of(cs, struct sh_cmt_channel, cs);
602 }
603 
604 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
605 {
606 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
607 	unsigned long flags;
608 	u32 has_wrapped;
609 	u64 value;
610 	u32 raw;
611 
612 	raw_spin_lock_irqsave(&ch->lock, flags);
613 	value = ch->total_cycles;
614 	raw = sh_cmt_get_counter(ch, &has_wrapped);
615 
616 	if (unlikely(has_wrapped))
617 		raw += ch->match_value + 1;
618 	raw_spin_unlock_irqrestore(&ch->lock, flags);
619 
620 	return value + raw;
621 }
622 
623 static int sh_cmt_clocksource_enable(struct clocksource *cs)
624 {
625 	int ret;
626 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
627 
628 	WARN_ON(ch->cs_enabled);
629 
630 	ch->total_cycles = 0;
631 
632 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
633 	if (!ret)
634 		ch->cs_enabled = true;
635 
636 	return ret;
637 }
638 
639 static void sh_cmt_clocksource_disable(struct clocksource *cs)
640 {
641 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
642 
643 	WARN_ON(!ch->cs_enabled);
644 
645 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
646 	ch->cs_enabled = false;
647 }
648 
649 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
650 {
651 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
652 
653 	if (!ch->cs_enabled)
654 		return;
655 
656 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
658 }
659 
660 static void sh_cmt_clocksource_resume(struct clocksource *cs)
661 {
662 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
663 
664 	if (!ch->cs_enabled)
665 		return;
666 
667 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
668 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
669 }
670 
671 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
672 				       const char *name)
673 {
674 	struct clocksource *cs = &ch->cs;
675 
676 	cs->name = name;
677 	cs->rating = 125;
678 	cs->read = sh_cmt_clocksource_read;
679 	cs->enable = sh_cmt_clocksource_enable;
680 	cs->disable = sh_cmt_clocksource_disable;
681 	cs->suspend = sh_cmt_clocksource_suspend;
682 	cs->resume = sh_cmt_clocksource_resume;
683 	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
684 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
685 
686 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
687 		 ch->index);
688 
689 	clocksource_register_hz(cs, ch->cmt->rate);
690 	return 0;
691 }
692 
693 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
694 {
695 	return container_of(ced, struct sh_cmt_channel, ced);
696 }
697 
698 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
699 {
700 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
701 
702 	if (periodic)
703 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
704 	else
705 		sh_cmt_set_next(ch, ch->max_match_value);
706 }
707 
708 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
709 {
710 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
711 
712 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
713 	return 0;
714 }
715 
716 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
717 					int periodic)
718 {
719 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
720 
721 	/* deal with old setting first */
722 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
723 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
724 
725 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
726 		 ch->index, periodic ? "periodic" : "oneshot");
727 	sh_cmt_clock_event_start(ch, periodic);
728 	return 0;
729 }
730 
731 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
732 {
733 	return sh_cmt_clock_event_set_state(ced, 0);
734 }
735 
736 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
737 {
738 	return sh_cmt_clock_event_set_state(ced, 1);
739 }
740 
741 static int sh_cmt_clock_event_next(unsigned long delta,
742 				   struct clock_event_device *ced)
743 {
744 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
745 
746 	BUG_ON(!clockevent_state_oneshot(ced));
747 	if (likely(ch->flags & FLAG_IRQCONTEXT))
748 		ch->next_match_value = delta - 1;
749 	else
750 		sh_cmt_set_next(ch, delta - 1);
751 
752 	return 0;
753 }
754 
755 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
756 {
757 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
758 
759 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
760 	clk_unprepare(ch->cmt->clk);
761 }
762 
763 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
764 {
765 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766 
767 	clk_prepare(ch->cmt->clk);
768 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
769 }
770 
771 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
772 				      const char *name)
773 {
774 	struct clock_event_device *ced = &ch->ced;
775 	int irq;
776 	int ret;
777 
778 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
779 	if (irq < 0)
780 		return irq;
781 
782 	ret = request_irq(irq, sh_cmt_interrupt,
783 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
784 			  dev_name(&ch->cmt->pdev->dev), ch);
785 	if (ret) {
786 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
787 			ch->index, irq);
788 		return ret;
789 	}
790 
791 	ced->name = name;
792 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
793 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
794 	ced->rating = 125;
795 	ced->cpumask = cpu_possible_mask;
796 	ced->set_next_event = sh_cmt_clock_event_next;
797 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
798 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
799 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
800 	ced->suspend = sh_cmt_clock_event_suspend;
801 	ced->resume = sh_cmt_clock_event_resume;
802 
803 	/* TODO: calculate good shift from rate and counter bit width */
804 	ced->shift = 32;
805 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
806 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
807 	ced->max_delta_ticks = ch->max_match_value;
808 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
809 	ced->min_delta_ticks = 0x1f;
810 
811 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
812 		 ch->index);
813 	clockevents_register_device(ced);
814 
815 	return 0;
816 }
817 
818 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
819 			   bool clockevent, bool clocksource)
820 {
821 	int ret;
822 
823 	if (clockevent) {
824 		ch->cmt->has_clockevent = true;
825 		ret = sh_cmt_register_clockevent(ch, name);
826 		if (ret < 0)
827 			return ret;
828 	}
829 
830 	if (clocksource) {
831 		ch->cmt->has_clocksource = true;
832 		sh_cmt_register_clocksource(ch, name);
833 	}
834 
835 	return 0;
836 }
837 
838 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
839 				unsigned int hwidx, bool clockevent,
840 				bool clocksource, struct sh_cmt_device *cmt)
841 {
842 	int ret;
843 
844 	/* Skip unused channels. */
845 	if (!clockevent && !clocksource)
846 		return 0;
847 
848 	ch->cmt = cmt;
849 	ch->index = index;
850 	ch->hwidx = hwidx;
851 	ch->timer_bit = hwidx;
852 
853 	/*
854 	 * Compute the address of the channel control register block. For the
855 	 * timers with a per-channel start/stop register, compute its address
856 	 * as well.
857 	 */
858 	switch (cmt->info->model) {
859 	case SH_CMT_16BIT:
860 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
861 		break;
862 	case SH_CMT_32BIT:
863 	case SH_CMT_48BIT:
864 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
865 		break;
866 	case SH_CMT0_RCAR_GEN2:
867 	case SH_CMT1_RCAR_GEN2:
868 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
869 		ch->ioctrl = ch->iostart + 0x10;
870 		ch->timer_bit = 0;
871 		break;
872 	}
873 
874 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
875 		ch->max_match_value = ~0;
876 	else
877 		ch->max_match_value = (1 << cmt->info->width) - 1;
878 
879 	ch->match_value = ch->max_match_value;
880 	raw_spin_lock_init(&ch->lock);
881 
882 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
883 			      clockevent, clocksource);
884 	if (ret) {
885 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
886 			ch->index);
887 		return ret;
888 	}
889 	ch->cs_enabled = false;
890 
891 	return 0;
892 }
893 
894 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
895 {
896 	struct resource *mem;
897 
898 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
899 	if (!mem) {
900 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
901 		return -ENXIO;
902 	}
903 
904 	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
905 	if (cmt->mapbase == NULL) {
906 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
907 		return -ENXIO;
908 	}
909 
910 	return 0;
911 }
912 
913 static const struct platform_device_id sh_cmt_id_table[] = {
914 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
915 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
916 	{ }
917 };
918 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
919 
920 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
921 	{
922 		/* deprecated, preserved for backward compatibility */
923 		.compatible = "renesas,cmt-48",
924 		.data = &sh_cmt_info[SH_CMT_48BIT]
925 	},
926 	{
927 		/* deprecated, preserved for backward compatibility */
928 		.compatible = "renesas,cmt-48-gen2",
929 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
930 	},
931 	{
932 		.compatible = "renesas,r8a7740-cmt1",
933 		.data = &sh_cmt_info[SH_CMT_48BIT]
934 	},
935 	{
936 		.compatible = "renesas,sh73a0-cmt1",
937 		.data = &sh_cmt_info[SH_CMT_48BIT]
938 	},
939 	{
940 		.compatible = "renesas,rcar-gen2-cmt0",
941 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
942 	},
943 	{
944 		.compatible = "renesas,rcar-gen2-cmt1",
945 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
946 	},
947 	{
948 		.compatible = "renesas,rcar-gen3-cmt0",
949 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
950 	},
951 	{
952 		.compatible = "renesas,rcar-gen3-cmt1",
953 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
954 	},
955 	{ }
956 };
957 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
958 
959 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
960 {
961 	unsigned int mask;
962 	unsigned int i;
963 	int ret;
964 
965 	cmt->pdev = pdev;
966 	raw_spin_lock_init(&cmt->lock);
967 
968 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
969 		cmt->info = of_device_get_match_data(&pdev->dev);
970 		cmt->hw_channels = cmt->info->channels_mask;
971 	} else if (pdev->dev.platform_data) {
972 		struct sh_timer_config *cfg = pdev->dev.platform_data;
973 		const struct platform_device_id *id = pdev->id_entry;
974 
975 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
976 		cmt->hw_channels = cfg->channels_mask;
977 	} else {
978 		dev_err(&cmt->pdev->dev, "missing platform data\n");
979 		return -ENXIO;
980 	}
981 
982 	/* Get hold of clock. */
983 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
984 	if (IS_ERR(cmt->clk)) {
985 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
986 		return PTR_ERR(cmt->clk);
987 	}
988 
989 	ret = clk_prepare(cmt->clk);
990 	if (ret < 0)
991 		goto err_clk_put;
992 
993 	/* Determine clock rate. */
994 	ret = clk_enable(cmt->clk);
995 	if (ret < 0)
996 		goto err_clk_unprepare;
997 
998 	if (cmt->info->width == 16)
999 		cmt->rate = clk_get_rate(cmt->clk) / 512;
1000 	else
1001 		cmt->rate = clk_get_rate(cmt->clk) / 8;
1002 
1003 	clk_disable(cmt->clk);
1004 
1005 	/* Map the memory resource(s). */
1006 	ret = sh_cmt_map_memory(cmt);
1007 	if (ret < 0)
1008 		goto err_clk_unprepare;
1009 
1010 	/* Allocate and setup the channels. */
1011 	cmt->num_channels = hweight8(cmt->hw_channels);
1012 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1013 				GFP_KERNEL);
1014 	if (cmt->channels == NULL) {
1015 		ret = -ENOMEM;
1016 		goto err_unmap;
1017 	}
1018 
1019 	/*
1020 	 * Use the first channel as a clock event device and the second channel
1021 	 * as a clock source. If only one channel is available use it for both.
1022 	 */
1023 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1024 		unsigned int hwidx = ffs(mask) - 1;
1025 		bool clocksource = i == 1 || cmt->num_channels == 1;
1026 		bool clockevent = i == 0;
1027 
1028 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1029 					   clockevent, clocksource, cmt);
1030 		if (ret < 0)
1031 			goto err_unmap;
1032 
1033 		mask &= ~(1 << hwidx);
1034 	}
1035 
1036 	platform_set_drvdata(pdev, cmt);
1037 
1038 	return 0;
1039 
1040 err_unmap:
1041 	kfree(cmt->channels);
1042 	iounmap(cmt->mapbase);
1043 err_clk_unprepare:
1044 	clk_unprepare(cmt->clk);
1045 err_clk_put:
1046 	clk_put(cmt->clk);
1047 	return ret;
1048 }
1049 
1050 static int sh_cmt_probe(struct platform_device *pdev)
1051 {
1052 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1053 	int ret;
1054 
1055 	if (!is_early_platform_device(pdev)) {
1056 		pm_runtime_set_active(&pdev->dev);
1057 		pm_runtime_enable(&pdev->dev);
1058 	}
1059 
1060 	if (cmt) {
1061 		dev_info(&pdev->dev, "kept as earlytimer\n");
1062 		goto out;
1063 	}
1064 
1065 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1066 	if (cmt == NULL)
1067 		return -ENOMEM;
1068 
1069 	ret = sh_cmt_setup(cmt, pdev);
1070 	if (ret) {
1071 		kfree(cmt);
1072 		pm_runtime_idle(&pdev->dev);
1073 		return ret;
1074 	}
1075 	if (is_early_platform_device(pdev))
1076 		return 0;
1077 
1078  out:
1079 	if (cmt->has_clockevent || cmt->has_clocksource)
1080 		pm_runtime_irq_safe(&pdev->dev);
1081 	else
1082 		pm_runtime_idle(&pdev->dev);
1083 
1084 	return 0;
1085 }
1086 
1087 static int sh_cmt_remove(struct platform_device *pdev)
1088 {
1089 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1090 }
1091 
1092 static struct platform_driver sh_cmt_device_driver = {
1093 	.probe		= sh_cmt_probe,
1094 	.remove		= sh_cmt_remove,
1095 	.driver		= {
1096 		.name	= "sh_cmt",
1097 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1098 	},
1099 	.id_table	= sh_cmt_id_table,
1100 };
1101 
1102 static int __init sh_cmt_init(void)
1103 {
1104 	return platform_driver_register(&sh_cmt_device_driver);
1105 }
1106 
1107 static void __exit sh_cmt_exit(void)
1108 {
1109 	platform_driver_unregister(&sh_cmt_device_driver);
1110 }
1111 
1112 early_platform_init("earlytimer", &sh_cmt_device_driver);
1113 subsys_initcall(sh_cmt_init);
1114 module_exit(sh_cmt_exit);
1115 
1116 MODULE_AUTHOR("Magnus Damm");
1117 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1118 MODULE_LICENSE("GPL v2");
1119