xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision 3a35093a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 
120 	raw_spinlock_t lock; /* Protect the shared start/stop register */
121 
122 	struct sh_cmt_channel *channels;
123 	unsigned int num_channels;
124 	unsigned int hw_channels;
125 
126 	bool has_clockevent;
127 	bool has_clocksource;
128 };
129 
130 #define SH_CMT16_CMCSR_CMF		(1 << 7)
131 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
132 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
133 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
134 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
135 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
137 
138 #define SH_CMT32_CMCSR_CMF		(1 << 15)
139 #define SH_CMT32_CMCSR_OVF		(1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
141 #define SH_CMT32_CMCSR_STTF		(1 << 12)
142 #define SH_CMT32_CMCSR_STPF		(1 << 11)
143 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
144 #define SH_CMT32_CMCSR_CMS		(1 << 9)
145 #define SH_CMT32_CMCSR_CMM		(1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
157 
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160 	return ioread16(base + (offs << 1));
161 }
162 
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165 	return ioread32(base + (offs << 2));
166 }
167 
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170 	iowrite16(value, base + (offs << 1));
171 }
172 
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175 	iowrite32(value, base + (offs << 2));
176 }
177 
178 static const struct sh_cmt_info sh_cmt_info[] = {
179 	[SH_CMT_16BIT] = {
180 		.model = SH_CMT_16BIT,
181 		.width = 16,
182 		.overflow_bit = SH_CMT16_CMCSR_CMF,
183 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
184 		.read_control = sh_cmt_read16,
185 		.write_control = sh_cmt_write16,
186 		.read_count = sh_cmt_read16,
187 		.write_count = sh_cmt_write16,
188 	},
189 	[SH_CMT_32BIT] = {
190 		.model = SH_CMT_32BIT,
191 		.width = 32,
192 		.overflow_bit = SH_CMT32_CMCSR_CMF,
193 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 		.read_control = sh_cmt_read16,
195 		.write_control = sh_cmt_write16,
196 		.read_count = sh_cmt_read32,
197 		.write_count = sh_cmt_write32,
198 	},
199 	[SH_CMT_48BIT] = {
200 		.model = SH_CMT_48BIT,
201 		.channels_mask = 0x3f,
202 		.width = 32,
203 		.overflow_bit = SH_CMT32_CMCSR_CMF,
204 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 		.read_control = sh_cmt_read32,
206 		.write_control = sh_cmt_write32,
207 		.read_count = sh_cmt_read32,
208 		.write_count = sh_cmt_write32,
209 	},
210 	[SH_CMT0_RCAR_GEN2] = {
211 		.model = SH_CMT0_RCAR_GEN2,
212 		.channels_mask = 0x60,
213 		.width = 32,
214 		.overflow_bit = SH_CMT32_CMCSR_CMF,
215 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 		.read_control = sh_cmt_read32,
217 		.write_control = sh_cmt_write32,
218 		.read_count = sh_cmt_read32,
219 		.write_count = sh_cmt_write32,
220 	},
221 	[SH_CMT1_RCAR_GEN2] = {
222 		.model = SH_CMT1_RCAR_GEN2,
223 		.channels_mask = 0xff,
224 		.width = 32,
225 		.overflow_bit = SH_CMT32_CMCSR_CMF,
226 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 		.read_control = sh_cmt_read32,
228 		.write_control = sh_cmt_write32,
229 		.read_count = sh_cmt_read32,
230 		.write_count = sh_cmt_write32,
231 	},
232 };
233 
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237 
238 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239 {
240 	if (ch->iostart)
241 		return ch->cmt->info->read_control(ch->iostart, 0);
242 	else
243 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244 }
245 
246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247 {
248 	if (ch->iostart)
249 		ch->cmt->info->write_control(ch->iostart, 0, value);
250 	else
251 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253 
254 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258 
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260 {
261 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262 }
263 
264 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265 {
266 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267 }
268 
269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270 {
271 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272 }
273 
274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275 {
276 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277 }
278 
279 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280 {
281 	u32 v1, v2, v3;
282 	u32 o1, o2;
283 
284 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285 
286 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
287 	do {
288 		o2 = o1;
289 		v1 = sh_cmt_read_cmcnt(ch);
290 		v2 = sh_cmt_read_cmcnt(ch);
291 		v3 = sh_cmt_read_cmcnt(ch);
292 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295 
296 	*has_wrapped = o1;
297 	return v2;
298 }
299 
300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301 {
302 	unsigned long flags;
303 	u32 value;
304 
305 	/* start stop register shared by multiple timer channels */
306 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307 	value = sh_cmt_read_cmstr(ch);
308 
309 	if (start)
310 		value |= 1 << ch->timer_bit;
311 	else
312 		value &= ~(1 << ch->timer_bit);
313 
314 	sh_cmt_write_cmstr(ch, value);
315 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316 }
317 
318 static int sh_cmt_enable(struct sh_cmt_channel *ch)
319 {
320 	int k, ret;
321 
322 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
323 
324 	/* enable clock */
325 	ret = clk_enable(ch->cmt->clk);
326 	if (ret) {
327 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
328 			ch->index);
329 		goto err0;
330 	}
331 
332 	/* make sure channel is disabled */
333 	sh_cmt_start_stop_ch(ch, 0);
334 
335 	/* configure channel, periodic mode and maximum timeout */
336 	if (ch->cmt->info->width == 16) {
337 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
338 				   SH_CMT16_CMCSR_CKS512);
339 	} else {
340 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
341 				   SH_CMT32_CMCSR_CMTOUT_IE |
342 				   SH_CMT32_CMCSR_CMR_IRQ |
343 				   SH_CMT32_CMCSR_CKS_RCLK8);
344 	}
345 
346 	sh_cmt_write_cmcor(ch, 0xffffffff);
347 	sh_cmt_write_cmcnt(ch, 0);
348 
349 	/*
350 	 * According to the sh73a0 user's manual, as CMCNT can be operated
351 	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
352 	 * modifying CMCNT register; two RCLK cycles are necessary before
353 	 * this register is either read or any modification of the value
354 	 * it holds is reflected in the LSI's actual operation.
355 	 *
356 	 * While at it, we're supposed to clear out the CMCNT as of this
357 	 * moment, so make sure it's processed properly here.  This will
358 	 * take RCLKx2 at maximum.
359 	 */
360 	for (k = 0; k < 100; k++) {
361 		if (!sh_cmt_read_cmcnt(ch))
362 			break;
363 		udelay(1);
364 	}
365 
366 	if (sh_cmt_read_cmcnt(ch)) {
367 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
368 			ch->index);
369 		ret = -ETIMEDOUT;
370 		goto err1;
371 	}
372 
373 	/* enable channel */
374 	sh_cmt_start_stop_ch(ch, 1);
375 	return 0;
376  err1:
377 	/* stop clock */
378 	clk_disable(ch->cmt->clk);
379 
380  err0:
381 	return ret;
382 }
383 
384 static void sh_cmt_disable(struct sh_cmt_channel *ch)
385 {
386 	/* disable channel */
387 	sh_cmt_start_stop_ch(ch, 0);
388 
389 	/* disable interrupts in CMT block */
390 	sh_cmt_write_cmcsr(ch, 0);
391 
392 	/* stop clock */
393 	clk_disable(ch->cmt->clk);
394 
395 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
396 }
397 
398 /* private flags */
399 #define FLAG_CLOCKEVENT (1 << 0)
400 #define FLAG_CLOCKSOURCE (1 << 1)
401 #define FLAG_REPROGRAM (1 << 2)
402 #define FLAG_SKIPEVENT (1 << 3)
403 #define FLAG_IRQCONTEXT (1 << 4)
404 
405 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
406 					      int absolute)
407 {
408 	u32 value = ch->next_match_value;
409 	u32 new_match;
410 	u32 delay = 0;
411 	u32 now = 0;
412 	u32 has_wrapped;
413 
414 	now = sh_cmt_get_counter(ch, &has_wrapped);
415 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
416 
417 	if (has_wrapped) {
418 		/* we're competing with the interrupt handler.
419 		 *  -> let the interrupt handler reprogram the timer.
420 		 *  -> interrupt number two handles the event.
421 		 */
422 		ch->flags |= FLAG_SKIPEVENT;
423 		return;
424 	}
425 
426 	if (absolute)
427 		now = 0;
428 
429 	do {
430 		/* reprogram the timer hardware,
431 		 * but don't save the new match value yet.
432 		 */
433 		new_match = now + value + delay;
434 		if (new_match > ch->max_match_value)
435 			new_match = ch->max_match_value;
436 
437 		sh_cmt_write_cmcor(ch, new_match);
438 
439 		now = sh_cmt_get_counter(ch, &has_wrapped);
440 		if (has_wrapped && (new_match > ch->match_value)) {
441 			/* we are changing to a greater match value,
442 			 * so this wrap must be caused by the counter
443 			 * matching the old value.
444 			 * -> first interrupt reprograms the timer.
445 			 * -> interrupt number two handles the event.
446 			 */
447 			ch->flags |= FLAG_SKIPEVENT;
448 			break;
449 		}
450 
451 		if (has_wrapped) {
452 			/* we are changing to a smaller match value,
453 			 * so the wrap must be caused by the counter
454 			 * matching the new value.
455 			 * -> save programmed match value.
456 			 * -> let isr handle the event.
457 			 */
458 			ch->match_value = new_match;
459 			break;
460 		}
461 
462 		/* be safe: verify hardware settings */
463 		if (now < new_match) {
464 			/* timer value is below match value, all good.
465 			 * this makes sure we won't miss any match events.
466 			 * -> save programmed match value.
467 			 * -> let isr handle the event.
468 			 */
469 			ch->match_value = new_match;
470 			break;
471 		}
472 
473 		/* the counter has reached a value greater
474 		 * than our new match value. and since the
475 		 * has_wrapped flag isn't set we must have
476 		 * programmed a too close event.
477 		 * -> increase delay and retry.
478 		 */
479 		if (delay)
480 			delay <<= 1;
481 		else
482 			delay = 1;
483 
484 		if (!delay)
485 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
486 				 ch->index);
487 
488 	} while (delay);
489 }
490 
491 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
492 {
493 	if (delta > ch->max_match_value)
494 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
495 			 ch->index);
496 
497 	ch->next_match_value = delta;
498 	sh_cmt_clock_event_program_verify(ch, 0);
499 }
500 
501 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
502 {
503 	unsigned long flags;
504 
505 	raw_spin_lock_irqsave(&ch->lock, flags);
506 	__sh_cmt_set_next(ch, delta);
507 	raw_spin_unlock_irqrestore(&ch->lock, flags);
508 }
509 
510 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
511 {
512 	struct sh_cmt_channel *ch = dev_id;
513 
514 	/* clear flags */
515 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
516 			   ch->cmt->info->clear_bits);
517 
518 	/* update clock source counter to begin with if enabled
519 	 * the wrap flag should be cleared by the timer specific
520 	 * isr before we end up here.
521 	 */
522 	if (ch->flags & FLAG_CLOCKSOURCE)
523 		ch->total_cycles += ch->match_value + 1;
524 
525 	if (!(ch->flags & FLAG_REPROGRAM))
526 		ch->next_match_value = ch->max_match_value;
527 
528 	ch->flags |= FLAG_IRQCONTEXT;
529 
530 	if (ch->flags & FLAG_CLOCKEVENT) {
531 		if (!(ch->flags & FLAG_SKIPEVENT)) {
532 			if (clockevent_state_oneshot(&ch->ced)) {
533 				ch->next_match_value = ch->max_match_value;
534 				ch->flags |= FLAG_REPROGRAM;
535 			}
536 
537 			ch->ced.event_handler(&ch->ced);
538 		}
539 	}
540 
541 	ch->flags &= ~FLAG_SKIPEVENT;
542 
543 	if (ch->flags & FLAG_REPROGRAM) {
544 		ch->flags &= ~FLAG_REPROGRAM;
545 		sh_cmt_clock_event_program_verify(ch, 1);
546 
547 		if (ch->flags & FLAG_CLOCKEVENT)
548 			if ((clockevent_state_shutdown(&ch->ced))
549 			    || (ch->match_value == ch->next_match_value))
550 				ch->flags &= ~FLAG_REPROGRAM;
551 	}
552 
553 	ch->flags &= ~FLAG_IRQCONTEXT;
554 
555 	return IRQ_HANDLED;
556 }
557 
558 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
559 {
560 	int ret = 0;
561 	unsigned long flags;
562 
563 	if (flag & FLAG_CLOCKSOURCE)
564 		pm_runtime_get_sync(&ch->cmt->pdev->dev);
565 
566 	raw_spin_lock_irqsave(&ch->lock, flags);
567 
568 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
569 		if (flag & FLAG_CLOCKEVENT)
570 			pm_runtime_get_sync(&ch->cmt->pdev->dev);
571 		ret = sh_cmt_enable(ch);
572 	}
573 
574 	if (ret)
575 		goto out;
576 	ch->flags |= flag;
577 
578 	/* setup timeout if no clockevent */
579 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
580 		__sh_cmt_set_next(ch, ch->max_match_value);
581  out:
582 	raw_spin_unlock_irqrestore(&ch->lock, flags);
583 
584 	return ret;
585 }
586 
587 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
588 {
589 	unsigned long flags;
590 	unsigned long f;
591 
592 	raw_spin_lock_irqsave(&ch->lock, flags);
593 
594 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
595 	ch->flags &= ~flag;
596 
597 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
598 		sh_cmt_disable(ch);
599 		if (flag & FLAG_CLOCKEVENT)
600 			pm_runtime_put(&ch->cmt->pdev->dev);
601 	}
602 
603 	/* adjust the timeout to maximum if only clocksource left */
604 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605 		__sh_cmt_set_next(ch, ch->max_match_value);
606 
607 	raw_spin_unlock_irqrestore(&ch->lock, flags);
608 
609 	if (flag & FLAG_CLOCKSOURCE)
610 		pm_runtime_put(&ch->cmt->pdev->dev);
611 }
612 
613 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
614 {
615 	return container_of(cs, struct sh_cmt_channel, cs);
616 }
617 
618 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
619 {
620 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
621 	unsigned long flags;
622 	u32 has_wrapped;
623 	u64 value;
624 	u32 raw;
625 
626 	raw_spin_lock_irqsave(&ch->lock, flags);
627 	value = ch->total_cycles;
628 	raw = sh_cmt_get_counter(ch, &has_wrapped);
629 
630 	if (unlikely(has_wrapped))
631 		raw += ch->match_value + 1;
632 	raw_spin_unlock_irqrestore(&ch->lock, flags);
633 
634 	return value + raw;
635 }
636 
637 static int sh_cmt_clocksource_enable(struct clocksource *cs)
638 {
639 	int ret;
640 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
641 
642 	WARN_ON(ch->cs_enabled);
643 
644 	ch->total_cycles = 0;
645 
646 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
647 	if (!ret)
648 		ch->cs_enabled = true;
649 
650 	return ret;
651 }
652 
653 static void sh_cmt_clocksource_disable(struct clocksource *cs)
654 {
655 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656 
657 	WARN_ON(!ch->cs_enabled);
658 
659 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
660 	ch->cs_enabled = false;
661 }
662 
663 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
664 {
665 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666 
667 	if (!ch->cs_enabled)
668 		return;
669 
670 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
671 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
672 }
673 
674 static void sh_cmt_clocksource_resume(struct clocksource *cs)
675 {
676 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
677 
678 	if (!ch->cs_enabled)
679 		return;
680 
681 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
682 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
683 }
684 
685 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
686 				       const char *name)
687 {
688 	struct clocksource *cs = &ch->cs;
689 
690 	cs->name = name;
691 	cs->rating = 125;
692 	cs->read = sh_cmt_clocksource_read;
693 	cs->enable = sh_cmt_clocksource_enable;
694 	cs->disable = sh_cmt_clocksource_disable;
695 	cs->suspend = sh_cmt_clocksource_suspend;
696 	cs->resume = sh_cmt_clocksource_resume;
697 	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
698 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
699 
700 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
701 		 ch->index);
702 
703 	clocksource_register_hz(cs, ch->cmt->rate);
704 	return 0;
705 }
706 
707 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
708 {
709 	return container_of(ced, struct sh_cmt_channel, ced);
710 }
711 
712 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
713 {
714 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
715 
716 	if (periodic)
717 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
718 	else
719 		sh_cmt_set_next(ch, ch->max_match_value);
720 }
721 
722 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
723 {
724 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
725 
726 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
727 	return 0;
728 }
729 
730 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
731 					int periodic)
732 {
733 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
734 
735 	/* deal with old setting first */
736 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
737 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
738 
739 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
740 		 ch->index, periodic ? "periodic" : "oneshot");
741 	sh_cmt_clock_event_start(ch, periodic);
742 	return 0;
743 }
744 
745 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
746 {
747 	return sh_cmt_clock_event_set_state(ced, 0);
748 }
749 
750 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
751 {
752 	return sh_cmt_clock_event_set_state(ced, 1);
753 }
754 
755 static int sh_cmt_clock_event_next(unsigned long delta,
756 				   struct clock_event_device *ced)
757 {
758 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759 
760 	BUG_ON(!clockevent_state_oneshot(ced));
761 	if (likely(ch->flags & FLAG_IRQCONTEXT))
762 		ch->next_match_value = delta - 1;
763 	else
764 		sh_cmt_set_next(ch, delta - 1);
765 
766 	return 0;
767 }
768 
769 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
770 {
771 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
772 
773 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
774 	clk_unprepare(ch->cmt->clk);
775 }
776 
777 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
778 {
779 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
780 
781 	clk_prepare(ch->cmt->clk);
782 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
783 }
784 
785 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
786 				      const char *name)
787 {
788 	struct clock_event_device *ced = &ch->ced;
789 	int irq;
790 	int ret;
791 
792 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
793 	if (irq < 0)
794 		return irq;
795 
796 	ret = request_irq(irq, sh_cmt_interrupt,
797 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
798 			  dev_name(&ch->cmt->pdev->dev), ch);
799 	if (ret) {
800 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
801 			ch->index, irq);
802 		return ret;
803 	}
804 
805 	ced->name = name;
806 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
807 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
808 	ced->rating = 125;
809 	ced->cpumask = cpu_possible_mask;
810 	ced->set_next_event = sh_cmt_clock_event_next;
811 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
812 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
813 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
814 	ced->suspend = sh_cmt_clock_event_suspend;
815 	ced->resume = sh_cmt_clock_event_resume;
816 
817 	/* TODO: calculate good shift from rate and counter bit width */
818 	ced->shift = 32;
819 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
820 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
821 	ced->max_delta_ticks = ch->max_match_value;
822 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
823 	ced->min_delta_ticks = 0x1f;
824 
825 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
826 		 ch->index);
827 	clockevents_register_device(ced);
828 
829 	return 0;
830 }
831 
832 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
833 			   bool clockevent, bool clocksource)
834 {
835 	int ret;
836 
837 	if (clockevent) {
838 		ch->cmt->has_clockevent = true;
839 		ret = sh_cmt_register_clockevent(ch, name);
840 		if (ret < 0)
841 			return ret;
842 	}
843 
844 	if (clocksource) {
845 		ch->cmt->has_clocksource = true;
846 		sh_cmt_register_clocksource(ch, name);
847 	}
848 
849 	return 0;
850 }
851 
852 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
853 				unsigned int hwidx, bool clockevent,
854 				bool clocksource, struct sh_cmt_device *cmt)
855 {
856 	int ret;
857 
858 	/* Skip unused channels. */
859 	if (!clockevent && !clocksource)
860 		return 0;
861 
862 	ch->cmt = cmt;
863 	ch->index = index;
864 	ch->hwidx = hwidx;
865 	ch->timer_bit = hwidx;
866 
867 	/*
868 	 * Compute the address of the channel control register block. For the
869 	 * timers with a per-channel start/stop register, compute its address
870 	 * as well.
871 	 */
872 	switch (cmt->info->model) {
873 	case SH_CMT_16BIT:
874 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
875 		break;
876 	case SH_CMT_32BIT:
877 	case SH_CMT_48BIT:
878 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
879 		break;
880 	case SH_CMT0_RCAR_GEN2:
881 	case SH_CMT1_RCAR_GEN2:
882 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
883 		ch->ioctrl = ch->iostart + 0x10;
884 		ch->timer_bit = 0;
885 		break;
886 	}
887 
888 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
889 		ch->max_match_value = ~0;
890 	else
891 		ch->max_match_value = (1 << cmt->info->width) - 1;
892 
893 	ch->match_value = ch->max_match_value;
894 	raw_spin_lock_init(&ch->lock);
895 
896 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
897 			      clockevent, clocksource);
898 	if (ret) {
899 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
900 			ch->index);
901 		return ret;
902 	}
903 	ch->cs_enabled = false;
904 
905 	return 0;
906 }
907 
908 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
909 {
910 	struct resource *mem;
911 
912 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
913 	if (!mem) {
914 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
915 		return -ENXIO;
916 	}
917 
918 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
919 	if (cmt->mapbase == NULL) {
920 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
921 		return -ENXIO;
922 	}
923 
924 	return 0;
925 }
926 
927 static const struct platform_device_id sh_cmt_id_table[] = {
928 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
929 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
930 	{ }
931 };
932 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
933 
934 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
935 	{
936 		/* deprecated, preserved for backward compatibility */
937 		.compatible = "renesas,cmt-48",
938 		.data = &sh_cmt_info[SH_CMT_48BIT]
939 	},
940 	{
941 		/* deprecated, preserved for backward compatibility */
942 		.compatible = "renesas,cmt-48-gen2",
943 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
944 	},
945 	{
946 		.compatible = "renesas,r8a7740-cmt1",
947 		.data = &sh_cmt_info[SH_CMT_48BIT]
948 	},
949 	{
950 		.compatible = "renesas,sh73a0-cmt1",
951 		.data = &sh_cmt_info[SH_CMT_48BIT]
952 	},
953 	{
954 		.compatible = "renesas,rcar-gen2-cmt0",
955 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
956 	},
957 	{
958 		.compatible = "renesas,rcar-gen2-cmt1",
959 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
960 	},
961 	{
962 		.compatible = "renesas,rcar-gen3-cmt0",
963 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
964 	},
965 	{
966 		.compatible = "renesas,rcar-gen3-cmt1",
967 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
968 	},
969 	{ }
970 };
971 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
972 
973 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
974 {
975 	unsigned int mask;
976 	unsigned int i;
977 	int ret;
978 
979 	cmt->pdev = pdev;
980 	raw_spin_lock_init(&cmt->lock);
981 
982 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
983 		cmt->info = of_device_get_match_data(&pdev->dev);
984 		cmt->hw_channels = cmt->info->channels_mask;
985 	} else if (pdev->dev.platform_data) {
986 		struct sh_timer_config *cfg = pdev->dev.platform_data;
987 		const struct platform_device_id *id = pdev->id_entry;
988 
989 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
990 		cmt->hw_channels = cfg->channels_mask;
991 	} else {
992 		dev_err(&cmt->pdev->dev, "missing platform data\n");
993 		return -ENXIO;
994 	}
995 
996 	/* Get hold of clock. */
997 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
998 	if (IS_ERR(cmt->clk)) {
999 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1000 		return PTR_ERR(cmt->clk);
1001 	}
1002 
1003 	ret = clk_prepare(cmt->clk);
1004 	if (ret < 0)
1005 		goto err_clk_put;
1006 
1007 	/* Determine clock rate. */
1008 	ret = clk_enable(cmt->clk);
1009 	if (ret < 0)
1010 		goto err_clk_unprepare;
1011 
1012 	if (cmt->info->width == 16)
1013 		cmt->rate = clk_get_rate(cmt->clk) / 512;
1014 	else
1015 		cmt->rate = clk_get_rate(cmt->clk) / 8;
1016 
1017 	clk_disable(cmt->clk);
1018 
1019 	/* Map the memory resource(s). */
1020 	ret = sh_cmt_map_memory(cmt);
1021 	if (ret < 0)
1022 		goto err_clk_unprepare;
1023 
1024 	/* Allocate and setup the channels. */
1025 	cmt->num_channels = hweight8(cmt->hw_channels);
1026 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1027 				GFP_KERNEL);
1028 	if (cmt->channels == NULL) {
1029 		ret = -ENOMEM;
1030 		goto err_unmap;
1031 	}
1032 
1033 	/*
1034 	 * Use the first channel as a clock event device and the second channel
1035 	 * as a clock source. If only one channel is available use it for both.
1036 	 */
1037 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1038 		unsigned int hwidx = ffs(mask) - 1;
1039 		bool clocksource = i == 1 || cmt->num_channels == 1;
1040 		bool clockevent = i == 0;
1041 
1042 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1043 					   clockevent, clocksource, cmt);
1044 		if (ret < 0)
1045 			goto err_unmap;
1046 
1047 		mask &= ~(1 << hwidx);
1048 	}
1049 
1050 	platform_set_drvdata(pdev, cmt);
1051 
1052 	return 0;
1053 
1054 err_unmap:
1055 	kfree(cmt->channels);
1056 	iounmap(cmt->mapbase);
1057 err_clk_unprepare:
1058 	clk_unprepare(cmt->clk);
1059 err_clk_put:
1060 	clk_put(cmt->clk);
1061 	return ret;
1062 }
1063 
1064 static int sh_cmt_probe(struct platform_device *pdev)
1065 {
1066 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1067 	int ret;
1068 
1069 	if (!is_sh_early_platform_device(pdev)) {
1070 		pm_runtime_set_active(&pdev->dev);
1071 		pm_runtime_enable(&pdev->dev);
1072 	}
1073 
1074 	if (cmt) {
1075 		dev_info(&pdev->dev, "kept as earlytimer\n");
1076 		goto out;
1077 	}
1078 
1079 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1080 	if (cmt == NULL)
1081 		return -ENOMEM;
1082 
1083 	ret = sh_cmt_setup(cmt, pdev);
1084 	if (ret) {
1085 		kfree(cmt);
1086 		pm_runtime_idle(&pdev->dev);
1087 		return ret;
1088 	}
1089 	if (is_sh_early_platform_device(pdev))
1090 		return 0;
1091 
1092  out:
1093 	if (cmt->has_clockevent || cmt->has_clocksource)
1094 		pm_runtime_irq_safe(&pdev->dev);
1095 	else
1096 		pm_runtime_idle(&pdev->dev);
1097 
1098 	return 0;
1099 }
1100 
1101 static int sh_cmt_remove(struct platform_device *pdev)
1102 {
1103 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1104 }
1105 
1106 static struct platform_driver sh_cmt_device_driver = {
1107 	.probe		= sh_cmt_probe,
1108 	.remove		= sh_cmt_remove,
1109 	.driver		= {
1110 		.name	= "sh_cmt",
1111 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1112 	},
1113 	.id_table	= sh_cmt_id_table,
1114 };
1115 
1116 static int __init sh_cmt_init(void)
1117 {
1118 	return platform_driver_register(&sh_cmt_device_driver);
1119 }
1120 
1121 static void __exit sh_cmt_exit(void)
1122 {
1123 	platform_driver_unregister(&sh_cmt_device_driver);
1124 }
1125 
1126 #ifdef CONFIG_SUPERH
1127 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1128 #endif
1129 
1130 subsys_initcall(sh_cmt_init);
1131 module_exit(sh_cmt_exit);
1132 
1133 MODULE_AUTHOR("Magnus Damm");
1134 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1135 MODULE_LICENSE("GPL v2");
1136