xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 
120 	raw_spinlock_t lock; /* Protect the shared start/stop register */
121 
122 	struct sh_cmt_channel *channels;
123 	unsigned int num_channels;
124 	unsigned int hw_channels;
125 
126 	bool has_clockevent;
127 	bool has_clocksource;
128 };
129 
130 #define SH_CMT16_CMCSR_CMF		(1 << 7)
131 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
132 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
133 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
134 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
135 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
137 
138 #define SH_CMT32_CMCSR_CMF		(1 << 15)
139 #define SH_CMT32_CMCSR_OVF		(1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
141 #define SH_CMT32_CMCSR_STTF		(1 << 12)
142 #define SH_CMT32_CMCSR_STPF		(1 << 11)
143 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
144 #define SH_CMT32_CMCSR_CMS		(1 << 9)
145 #define SH_CMT32_CMCSR_CMM		(1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
157 
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160 	return ioread16(base + (offs << 1));
161 }
162 
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165 	return ioread32(base + (offs << 2));
166 }
167 
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170 	iowrite16(value, base + (offs << 1));
171 }
172 
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175 	iowrite32(value, base + (offs << 2));
176 }
177 
178 static const struct sh_cmt_info sh_cmt_info[] = {
179 	[SH_CMT_16BIT] = {
180 		.model = SH_CMT_16BIT,
181 		.width = 16,
182 		.overflow_bit = SH_CMT16_CMCSR_CMF,
183 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
184 		.read_control = sh_cmt_read16,
185 		.write_control = sh_cmt_write16,
186 		.read_count = sh_cmt_read16,
187 		.write_count = sh_cmt_write16,
188 	},
189 	[SH_CMT_32BIT] = {
190 		.model = SH_CMT_32BIT,
191 		.width = 32,
192 		.overflow_bit = SH_CMT32_CMCSR_CMF,
193 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 		.read_control = sh_cmt_read16,
195 		.write_control = sh_cmt_write16,
196 		.read_count = sh_cmt_read32,
197 		.write_count = sh_cmt_write32,
198 	},
199 	[SH_CMT_48BIT] = {
200 		.model = SH_CMT_48BIT,
201 		.channels_mask = 0x3f,
202 		.width = 32,
203 		.overflow_bit = SH_CMT32_CMCSR_CMF,
204 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 		.read_control = sh_cmt_read32,
206 		.write_control = sh_cmt_write32,
207 		.read_count = sh_cmt_read32,
208 		.write_count = sh_cmt_write32,
209 	},
210 	[SH_CMT0_RCAR_GEN2] = {
211 		.model = SH_CMT0_RCAR_GEN2,
212 		.channels_mask = 0x60,
213 		.width = 32,
214 		.overflow_bit = SH_CMT32_CMCSR_CMF,
215 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 		.read_control = sh_cmt_read32,
217 		.write_control = sh_cmt_write32,
218 		.read_count = sh_cmt_read32,
219 		.write_count = sh_cmt_write32,
220 	},
221 	[SH_CMT1_RCAR_GEN2] = {
222 		.model = SH_CMT1_RCAR_GEN2,
223 		.channels_mask = 0xff,
224 		.width = 32,
225 		.overflow_bit = SH_CMT32_CMCSR_CMF,
226 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 		.read_control = sh_cmt_read32,
228 		.write_control = sh_cmt_write32,
229 		.read_count = sh_cmt_read32,
230 		.write_count = sh_cmt_write32,
231 	},
232 };
233 
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237 
238 #define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
239 
240 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
241 {
242 	if (ch->iostart)
243 		return ch->cmt->info->read_control(ch->iostart, 0);
244 	else
245 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
246 }
247 
248 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
249 {
250 	if (ch->iostart)
251 		ch->cmt->info->write_control(ch->iostart, 0, value);
252 	else
253 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255 
256 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260 
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
262 {
263 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
264 }
265 
266 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
267 {
268 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
269 }
270 
271 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
272 {
273 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
274 }
275 
276 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
277 {
278 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
279 }
280 
281 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
282 {
283 	u32 v1, v2, v3;
284 	u32 o1, o2;
285 
286 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
287 
288 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
289 	do {
290 		o2 = o1;
291 		v1 = sh_cmt_read_cmcnt(ch);
292 		v2 = sh_cmt_read_cmcnt(ch);
293 		v3 = sh_cmt_read_cmcnt(ch);
294 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
295 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
296 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
297 
298 	*has_wrapped = o1;
299 	return v2;
300 }
301 
302 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
303 {
304 	unsigned long flags;
305 	u32 value;
306 
307 	/* start stop register shared by multiple timer channels */
308 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
309 	value = sh_cmt_read_cmstr(ch);
310 
311 	if (start)
312 		value |= 1 << ch->timer_bit;
313 	else
314 		value &= ~(1 << ch->timer_bit);
315 
316 	sh_cmt_write_cmstr(ch, value);
317 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
318 }
319 
320 static int sh_cmt_enable(struct sh_cmt_channel *ch)
321 {
322 	int k, ret;
323 
324 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
325 
326 	/* enable clock */
327 	ret = clk_enable(ch->cmt->clk);
328 	if (ret) {
329 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
330 			ch->index);
331 		goto err0;
332 	}
333 
334 	/* make sure channel is disabled */
335 	sh_cmt_start_stop_ch(ch, 0);
336 
337 	/* configure channel, periodic mode and maximum timeout */
338 	if (ch->cmt->info->width == 16) {
339 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
340 				   SH_CMT16_CMCSR_CKS512);
341 	} else {
342 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
343 				   SH_CMT32_CMCSR_CMTOUT_IE |
344 				   SH_CMT32_CMCSR_CMR_IRQ |
345 				   SH_CMT32_CMCSR_CKS_RCLK8);
346 	}
347 
348 	sh_cmt_write_cmcor(ch, 0xffffffff);
349 	sh_cmt_write_cmcnt(ch, 0);
350 
351 	/*
352 	 * According to the sh73a0 user's manual, as CMCNT can be operated
353 	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
354 	 * modifying CMCNT register; two RCLK cycles are necessary before
355 	 * this register is either read or any modification of the value
356 	 * it holds is reflected in the LSI's actual operation.
357 	 *
358 	 * While at it, we're supposed to clear out the CMCNT as of this
359 	 * moment, so make sure it's processed properly here.  This will
360 	 * take RCLKx2 at maximum.
361 	 */
362 	for (k = 0; k < 100; k++) {
363 		if (!sh_cmt_read_cmcnt(ch))
364 			break;
365 		udelay(1);
366 	}
367 
368 	if (sh_cmt_read_cmcnt(ch)) {
369 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
370 			ch->index);
371 		ret = -ETIMEDOUT;
372 		goto err1;
373 	}
374 
375 	/* enable channel */
376 	sh_cmt_start_stop_ch(ch, 1);
377 	return 0;
378  err1:
379 	/* stop clock */
380 	clk_disable(ch->cmt->clk);
381 
382  err0:
383 	return ret;
384 }
385 
386 static void sh_cmt_disable(struct sh_cmt_channel *ch)
387 {
388 	/* disable channel */
389 	sh_cmt_start_stop_ch(ch, 0);
390 
391 	/* disable interrupts in CMT block */
392 	sh_cmt_write_cmcsr(ch, 0);
393 
394 	/* stop clock */
395 	clk_disable(ch->cmt->clk);
396 
397 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
398 }
399 
400 /* private flags */
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
406 
407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408 					      int absolute)
409 {
410 	u32 value = ch->next_match_value;
411 	u32 new_match;
412 	u32 delay = 0;
413 	u32 now = 0;
414 	u32 has_wrapped;
415 
416 	now = sh_cmt_get_counter(ch, &has_wrapped);
417 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418 
419 	if (has_wrapped) {
420 		/* we're competing with the interrupt handler.
421 		 *  -> let the interrupt handler reprogram the timer.
422 		 *  -> interrupt number two handles the event.
423 		 */
424 		ch->flags |= FLAG_SKIPEVENT;
425 		return;
426 	}
427 
428 	if (absolute)
429 		now = 0;
430 
431 	do {
432 		/* reprogram the timer hardware,
433 		 * but don't save the new match value yet.
434 		 */
435 		new_match = now + value + delay;
436 		if (new_match > ch->max_match_value)
437 			new_match = ch->max_match_value;
438 
439 		sh_cmt_write_cmcor(ch, new_match);
440 
441 		now = sh_cmt_get_counter(ch, &has_wrapped);
442 		if (has_wrapped && (new_match > ch->match_value)) {
443 			/* we are changing to a greater match value,
444 			 * so this wrap must be caused by the counter
445 			 * matching the old value.
446 			 * -> first interrupt reprograms the timer.
447 			 * -> interrupt number two handles the event.
448 			 */
449 			ch->flags |= FLAG_SKIPEVENT;
450 			break;
451 		}
452 
453 		if (has_wrapped) {
454 			/* we are changing to a smaller match value,
455 			 * so the wrap must be caused by the counter
456 			 * matching the new value.
457 			 * -> save programmed match value.
458 			 * -> let isr handle the event.
459 			 */
460 			ch->match_value = new_match;
461 			break;
462 		}
463 
464 		/* be safe: verify hardware settings */
465 		if (now < new_match) {
466 			/* timer value is below match value, all good.
467 			 * this makes sure we won't miss any match events.
468 			 * -> save programmed match value.
469 			 * -> let isr handle the event.
470 			 */
471 			ch->match_value = new_match;
472 			break;
473 		}
474 
475 		/* the counter has reached a value greater
476 		 * than our new match value. and since the
477 		 * has_wrapped flag isn't set we must have
478 		 * programmed a too close event.
479 		 * -> increase delay and retry.
480 		 */
481 		if (delay)
482 			delay <<= 1;
483 		else
484 			delay = 1;
485 
486 		if (!delay)
487 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488 				 ch->index);
489 
490 	} while (delay);
491 }
492 
493 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494 {
495 	if (delta > ch->max_match_value)
496 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497 			 ch->index);
498 
499 	ch->next_match_value = delta;
500 	sh_cmt_clock_event_program_verify(ch, 0);
501 }
502 
503 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504 {
505 	unsigned long flags;
506 
507 	raw_spin_lock_irqsave(&ch->lock, flags);
508 	__sh_cmt_set_next(ch, delta);
509 	raw_spin_unlock_irqrestore(&ch->lock, flags);
510 }
511 
512 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513 {
514 	struct sh_cmt_channel *ch = dev_id;
515 
516 	/* clear flags */
517 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518 			   ch->cmt->info->clear_bits);
519 
520 	/* update clock source counter to begin with if enabled
521 	 * the wrap flag should be cleared by the timer specific
522 	 * isr before we end up here.
523 	 */
524 	if (ch->flags & FLAG_CLOCKSOURCE)
525 		ch->total_cycles += ch->match_value + 1;
526 
527 	if (!(ch->flags & FLAG_REPROGRAM))
528 		ch->next_match_value = ch->max_match_value;
529 
530 	ch->flags |= FLAG_IRQCONTEXT;
531 
532 	if (ch->flags & FLAG_CLOCKEVENT) {
533 		if (!(ch->flags & FLAG_SKIPEVENT)) {
534 			if (clockevent_state_oneshot(&ch->ced)) {
535 				ch->next_match_value = ch->max_match_value;
536 				ch->flags |= FLAG_REPROGRAM;
537 			}
538 
539 			ch->ced.event_handler(&ch->ced);
540 		}
541 	}
542 
543 	ch->flags &= ~FLAG_SKIPEVENT;
544 
545 	if (ch->flags & FLAG_REPROGRAM) {
546 		ch->flags &= ~FLAG_REPROGRAM;
547 		sh_cmt_clock_event_program_verify(ch, 1);
548 
549 		if (ch->flags & FLAG_CLOCKEVENT)
550 			if ((clockevent_state_shutdown(&ch->ced))
551 			    || (ch->match_value == ch->next_match_value))
552 				ch->flags &= ~FLAG_REPROGRAM;
553 	}
554 
555 	ch->flags &= ~FLAG_IRQCONTEXT;
556 
557 	return IRQ_HANDLED;
558 }
559 
560 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561 {
562 	int ret = 0;
563 	unsigned long flags;
564 
565 	if (flag & FLAG_CLOCKSOURCE)
566 		pm_runtime_get_sync(&ch->cmt->pdev->dev);
567 
568 	raw_spin_lock_irqsave(&ch->lock, flags);
569 
570 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
571 		if (flag & FLAG_CLOCKEVENT)
572 			pm_runtime_get_sync(&ch->cmt->pdev->dev);
573 		ret = sh_cmt_enable(ch);
574 	}
575 
576 	if (ret)
577 		goto out;
578 	ch->flags |= flag;
579 
580 	/* setup timeout if no clockevent */
581 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
582 		__sh_cmt_set_next(ch, ch->max_match_value);
583  out:
584 	raw_spin_unlock_irqrestore(&ch->lock, flags);
585 
586 	return ret;
587 }
588 
589 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
590 {
591 	unsigned long flags;
592 	unsigned long f;
593 
594 	raw_spin_lock_irqsave(&ch->lock, flags);
595 
596 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
597 	ch->flags &= ~flag;
598 
599 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
600 		sh_cmt_disable(ch);
601 		if (flag & FLAG_CLOCKEVENT)
602 			pm_runtime_put(&ch->cmt->pdev->dev);
603 	}
604 
605 	/* adjust the timeout to maximum if only clocksource left */
606 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
607 		__sh_cmt_set_next(ch, ch->max_match_value);
608 
609 	raw_spin_unlock_irqrestore(&ch->lock, flags);
610 
611 	if (flag & FLAG_CLOCKSOURCE)
612 		pm_runtime_put(&ch->cmt->pdev->dev);
613 }
614 
615 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
616 {
617 	return container_of(cs, struct sh_cmt_channel, cs);
618 }
619 
620 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
621 {
622 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
623 	unsigned long flags;
624 	u32 has_wrapped;
625 	u64 value;
626 	u32 raw;
627 
628 	raw_spin_lock_irqsave(&ch->lock, flags);
629 	value = ch->total_cycles;
630 	raw = sh_cmt_get_counter(ch, &has_wrapped);
631 
632 	if (unlikely(has_wrapped))
633 		raw += ch->match_value + 1;
634 	raw_spin_unlock_irqrestore(&ch->lock, flags);
635 
636 	return value + raw;
637 }
638 
639 static int sh_cmt_clocksource_enable(struct clocksource *cs)
640 {
641 	int ret;
642 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
643 
644 	WARN_ON(ch->cs_enabled);
645 
646 	ch->total_cycles = 0;
647 
648 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
649 	if (!ret)
650 		ch->cs_enabled = true;
651 
652 	return ret;
653 }
654 
655 static void sh_cmt_clocksource_disable(struct clocksource *cs)
656 {
657 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
658 
659 	WARN_ON(!ch->cs_enabled);
660 
661 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
662 	ch->cs_enabled = false;
663 }
664 
665 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
666 {
667 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
668 
669 	if (!ch->cs_enabled)
670 		return;
671 
672 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
673 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
674 }
675 
676 static void sh_cmt_clocksource_resume(struct clocksource *cs)
677 {
678 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
679 
680 	if (!ch->cs_enabled)
681 		return;
682 
683 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
684 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
685 }
686 
687 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
688 				       const char *name)
689 {
690 	struct clocksource *cs = &ch->cs;
691 
692 	cs->name = name;
693 	cs->rating = 125;
694 	cs->read = sh_cmt_clocksource_read;
695 	cs->enable = sh_cmt_clocksource_enable;
696 	cs->disable = sh_cmt_clocksource_disable;
697 	cs->suspend = sh_cmt_clocksource_suspend;
698 	cs->resume = sh_cmt_clocksource_resume;
699 	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
700 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
701 
702 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
703 		 ch->index);
704 
705 	clocksource_register_hz(cs, ch->cmt->rate);
706 	return 0;
707 }
708 
709 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
710 {
711 	return container_of(ced, struct sh_cmt_channel, ced);
712 }
713 
714 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
715 {
716 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
717 
718 	if (periodic)
719 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
720 	else
721 		sh_cmt_set_next(ch, ch->max_match_value);
722 }
723 
724 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
725 {
726 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
727 
728 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
729 	return 0;
730 }
731 
732 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
733 					int periodic)
734 {
735 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
736 
737 	/* deal with old setting first */
738 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
739 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
740 
741 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
742 		 ch->index, periodic ? "periodic" : "oneshot");
743 	sh_cmt_clock_event_start(ch, periodic);
744 	return 0;
745 }
746 
747 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
748 {
749 	return sh_cmt_clock_event_set_state(ced, 0);
750 }
751 
752 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
753 {
754 	return sh_cmt_clock_event_set_state(ced, 1);
755 }
756 
757 static int sh_cmt_clock_event_next(unsigned long delta,
758 				   struct clock_event_device *ced)
759 {
760 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
761 
762 	BUG_ON(!clockevent_state_oneshot(ced));
763 	if (likely(ch->flags & FLAG_IRQCONTEXT))
764 		ch->next_match_value = delta - 1;
765 	else
766 		sh_cmt_set_next(ch, delta - 1);
767 
768 	return 0;
769 }
770 
771 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
772 {
773 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774 
775 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
776 	clk_unprepare(ch->cmt->clk);
777 }
778 
779 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
780 {
781 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
782 
783 	clk_prepare(ch->cmt->clk);
784 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
785 }
786 
787 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
788 				      const char *name)
789 {
790 	struct clock_event_device *ced = &ch->ced;
791 	int irq;
792 	int ret;
793 
794 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
795 	if (irq < 0)
796 		return irq;
797 
798 	ret = request_irq(irq, sh_cmt_interrupt,
799 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
800 			  dev_name(&ch->cmt->pdev->dev), ch);
801 	if (ret) {
802 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
803 			ch->index, irq);
804 		return ret;
805 	}
806 
807 	ced->name = name;
808 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
809 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
810 	ced->rating = 125;
811 	ced->cpumask = cpu_possible_mask;
812 	ced->set_next_event = sh_cmt_clock_event_next;
813 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
814 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
815 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
816 	ced->suspend = sh_cmt_clock_event_suspend;
817 	ced->resume = sh_cmt_clock_event_resume;
818 
819 	/* TODO: calculate good shift from rate and counter bit width */
820 	ced->shift = 32;
821 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
822 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
823 	ced->max_delta_ticks = ch->max_match_value;
824 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
825 	ced->min_delta_ticks = 0x1f;
826 
827 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
828 		 ch->index);
829 	clockevents_register_device(ced);
830 
831 	return 0;
832 }
833 
834 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
835 			   bool clockevent, bool clocksource)
836 {
837 	int ret;
838 
839 	if (clockevent) {
840 		ch->cmt->has_clockevent = true;
841 		ret = sh_cmt_register_clockevent(ch, name);
842 		if (ret < 0)
843 			return ret;
844 	}
845 
846 	if (clocksource) {
847 		ch->cmt->has_clocksource = true;
848 		sh_cmt_register_clocksource(ch, name);
849 	}
850 
851 	return 0;
852 }
853 
854 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
855 				unsigned int hwidx, bool clockevent,
856 				bool clocksource, struct sh_cmt_device *cmt)
857 {
858 	u32 value;
859 	int ret;
860 
861 	/* Skip unused channels. */
862 	if (!clockevent && !clocksource)
863 		return 0;
864 
865 	ch->cmt = cmt;
866 	ch->index = index;
867 	ch->hwidx = hwidx;
868 	ch->timer_bit = hwidx;
869 
870 	/*
871 	 * Compute the address of the channel control register block. For the
872 	 * timers with a per-channel start/stop register, compute its address
873 	 * as well.
874 	 */
875 	switch (cmt->info->model) {
876 	case SH_CMT_16BIT:
877 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
878 		break;
879 	case SH_CMT_32BIT:
880 	case SH_CMT_48BIT:
881 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
882 		break;
883 	case SH_CMT0_RCAR_GEN2:
884 	case SH_CMT1_RCAR_GEN2:
885 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
886 		ch->ioctrl = ch->iostart + 0x10;
887 		ch->timer_bit = 0;
888 
889 		/* Enable the clock supply to the channel */
890 		value = ioread32(cmt->mapbase + CMCLKE);
891 		value |= BIT(hwidx);
892 		iowrite32(value, cmt->mapbase + CMCLKE);
893 		break;
894 	}
895 
896 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
897 		ch->max_match_value = ~0;
898 	else
899 		ch->max_match_value = (1 << cmt->info->width) - 1;
900 
901 	ch->match_value = ch->max_match_value;
902 	raw_spin_lock_init(&ch->lock);
903 
904 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
905 			      clockevent, clocksource);
906 	if (ret) {
907 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
908 			ch->index);
909 		return ret;
910 	}
911 	ch->cs_enabled = false;
912 
913 	return 0;
914 }
915 
916 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
917 {
918 	struct resource *mem;
919 
920 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
921 	if (!mem) {
922 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
923 		return -ENXIO;
924 	}
925 
926 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
927 	if (cmt->mapbase == NULL) {
928 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
929 		return -ENXIO;
930 	}
931 
932 	return 0;
933 }
934 
935 static const struct platform_device_id sh_cmt_id_table[] = {
936 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
937 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
938 	{ }
939 };
940 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
941 
942 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
943 	{
944 		/* deprecated, preserved for backward compatibility */
945 		.compatible = "renesas,cmt-48",
946 		.data = &sh_cmt_info[SH_CMT_48BIT]
947 	},
948 	{
949 		/* deprecated, preserved for backward compatibility */
950 		.compatible = "renesas,cmt-48-gen2",
951 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
952 	},
953 	{
954 		.compatible = "renesas,r8a7740-cmt1",
955 		.data = &sh_cmt_info[SH_CMT_48BIT]
956 	},
957 	{
958 		.compatible = "renesas,sh73a0-cmt1",
959 		.data = &sh_cmt_info[SH_CMT_48BIT]
960 	},
961 	{
962 		.compatible = "renesas,rcar-gen2-cmt0",
963 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
964 	},
965 	{
966 		.compatible = "renesas,rcar-gen2-cmt1",
967 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
968 	},
969 	{
970 		.compatible = "renesas,rcar-gen3-cmt0",
971 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
972 	},
973 	{
974 		.compatible = "renesas,rcar-gen3-cmt1",
975 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
976 	},
977 	{ }
978 };
979 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
980 
981 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
982 {
983 	unsigned int mask;
984 	unsigned int i;
985 	int ret;
986 
987 	cmt->pdev = pdev;
988 	raw_spin_lock_init(&cmt->lock);
989 
990 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
991 		cmt->info = of_device_get_match_data(&pdev->dev);
992 		cmt->hw_channels = cmt->info->channels_mask;
993 	} else if (pdev->dev.platform_data) {
994 		struct sh_timer_config *cfg = pdev->dev.platform_data;
995 		const struct platform_device_id *id = pdev->id_entry;
996 
997 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
998 		cmt->hw_channels = cfg->channels_mask;
999 	} else {
1000 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1001 		return -ENXIO;
1002 	}
1003 
1004 	/* Get hold of clock. */
1005 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1006 	if (IS_ERR(cmt->clk)) {
1007 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1008 		return PTR_ERR(cmt->clk);
1009 	}
1010 
1011 	ret = clk_prepare(cmt->clk);
1012 	if (ret < 0)
1013 		goto err_clk_put;
1014 
1015 	/* Determine clock rate. */
1016 	ret = clk_enable(cmt->clk);
1017 	if (ret < 0)
1018 		goto err_clk_unprepare;
1019 
1020 	if (cmt->info->width == 16)
1021 		cmt->rate = clk_get_rate(cmt->clk) / 512;
1022 	else
1023 		cmt->rate = clk_get_rate(cmt->clk) / 8;
1024 
1025 	/* Map the memory resource(s). */
1026 	ret = sh_cmt_map_memory(cmt);
1027 	if (ret < 0)
1028 		goto err_clk_disable;
1029 
1030 	/* Allocate and setup the channels. */
1031 	cmt->num_channels = hweight8(cmt->hw_channels);
1032 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1033 				GFP_KERNEL);
1034 	if (cmt->channels == NULL) {
1035 		ret = -ENOMEM;
1036 		goto err_unmap;
1037 	}
1038 
1039 	/*
1040 	 * Use the first channel as a clock event device and the second channel
1041 	 * as a clock source. If only one channel is available use it for both.
1042 	 */
1043 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1044 		unsigned int hwidx = ffs(mask) - 1;
1045 		bool clocksource = i == 1 || cmt->num_channels == 1;
1046 		bool clockevent = i == 0;
1047 
1048 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1049 					   clockevent, clocksource, cmt);
1050 		if (ret < 0)
1051 			goto err_unmap;
1052 
1053 		mask &= ~(1 << hwidx);
1054 	}
1055 
1056 	clk_disable(cmt->clk);
1057 
1058 	platform_set_drvdata(pdev, cmt);
1059 
1060 	return 0;
1061 
1062 err_unmap:
1063 	kfree(cmt->channels);
1064 	iounmap(cmt->mapbase);
1065 err_clk_disable:
1066 	clk_disable(cmt->clk);
1067 err_clk_unprepare:
1068 	clk_unprepare(cmt->clk);
1069 err_clk_put:
1070 	clk_put(cmt->clk);
1071 	return ret;
1072 }
1073 
1074 static int sh_cmt_probe(struct platform_device *pdev)
1075 {
1076 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1077 	int ret;
1078 
1079 	if (!is_sh_early_platform_device(pdev)) {
1080 		pm_runtime_set_active(&pdev->dev);
1081 		pm_runtime_enable(&pdev->dev);
1082 	}
1083 
1084 	if (cmt) {
1085 		dev_info(&pdev->dev, "kept as earlytimer\n");
1086 		goto out;
1087 	}
1088 
1089 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1090 	if (cmt == NULL)
1091 		return -ENOMEM;
1092 
1093 	ret = sh_cmt_setup(cmt, pdev);
1094 	if (ret) {
1095 		kfree(cmt);
1096 		pm_runtime_idle(&pdev->dev);
1097 		return ret;
1098 	}
1099 	if (is_sh_early_platform_device(pdev))
1100 		return 0;
1101 
1102  out:
1103 	if (cmt->has_clockevent || cmt->has_clocksource)
1104 		pm_runtime_irq_safe(&pdev->dev);
1105 	else
1106 		pm_runtime_idle(&pdev->dev);
1107 
1108 	return 0;
1109 }
1110 
1111 static int sh_cmt_remove(struct platform_device *pdev)
1112 {
1113 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1114 }
1115 
1116 static struct platform_driver sh_cmt_device_driver = {
1117 	.probe		= sh_cmt_probe,
1118 	.remove		= sh_cmt_remove,
1119 	.driver		= {
1120 		.name	= "sh_cmt",
1121 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1122 	},
1123 	.id_table	= sh_cmt_id_table,
1124 };
1125 
1126 static int __init sh_cmt_init(void)
1127 {
1128 	return platform_driver_register(&sh_cmt_device_driver);
1129 }
1130 
1131 static void __exit sh_cmt_exit(void)
1132 {
1133 	platform_driver_unregister(&sh_cmt_device_driver);
1134 }
1135 
1136 #ifdef CONFIG_SUPERH
1137 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1138 #endif
1139 
1140 subsys_initcall(sh_cmt_init);
1141 module_exit(sh_cmt_exit);
1142 
1143 MODULE_AUTHOR("Magnus Damm");
1144 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1145 MODULE_LICENSE("GPL v2");
1146