xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision 2bdd5238)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 
120 	raw_spinlock_t lock; /* Protect the shared start/stop register */
121 
122 	struct sh_cmt_channel *channels;
123 	unsigned int num_channels;
124 	unsigned int hw_channels;
125 
126 	bool has_clockevent;
127 	bool has_clocksource;
128 };
129 
130 #define SH_CMT16_CMCSR_CMF		(1 << 7)
131 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
132 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
133 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
134 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
135 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
137 
138 #define SH_CMT32_CMCSR_CMF		(1 << 15)
139 #define SH_CMT32_CMCSR_OVF		(1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
141 #define SH_CMT32_CMCSR_STTF		(1 << 12)
142 #define SH_CMT32_CMCSR_STPF		(1 << 11)
143 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
144 #define SH_CMT32_CMCSR_CMS		(1 << 9)
145 #define SH_CMT32_CMCSR_CMM		(1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
157 
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160 	return ioread16(base + (offs << 1));
161 }
162 
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165 	return ioread32(base + (offs << 2));
166 }
167 
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170 	iowrite16(value, base + (offs << 1));
171 }
172 
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175 	iowrite32(value, base + (offs << 2));
176 }
177 
178 static const struct sh_cmt_info sh_cmt_info[] = {
179 	[SH_CMT_16BIT] = {
180 		.model = SH_CMT_16BIT,
181 		.width = 16,
182 		.overflow_bit = SH_CMT16_CMCSR_CMF,
183 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
184 		.read_control = sh_cmt_read16,
185 		.write_control = sh_cmt_write16,
186 		.read_count = sh_cmt_read16,
187 		.write_count = sh_cmt_write16,
188 	},
189 	[SH_CMT_32BIT] = {
190 		.model = SH_CMT_32BIT,
191 		.width = 32,
192 		.overflow_bit = SH_CMT32_CMCSR_CMF,
193 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 		.read_control = sh_cmt_read16,
195 		.write_control = sh_cmt_write16,
196 		.read_count = sh_cmt_read32,
197 		.write_count = sh_cmt_write32,
198 	},
199 	[SH_CMT_48BIT] = {
200 		.model = SH_CMT_48BIT,
201 		.channels_mask = 0x3f,
202 		.width = 32,
203 		.overflow_bit = SH_CMT32_CMCSR_CMF,
204 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 		.read_control = sh_cmt_read32,
206 		.write_control = sh_cmt_write32,
207 		.read_count = sh_cmt_read32,
208 		.write_count = sh_cmt_write32,
209 	},
210 	[SH_CMT0_RCAR_GEN2] = {
211 		.model = SH_CMT0_RCAR_GEN2,
212 		.channels_mask = 0x60,
213 		.width = 32,
214 		.overflow_bit = SH_CMT32_CMCSR_CMF,
215 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 		.read_control = sh_cmt_read32,
217 		.write_control = sh_cmt_write32,
218 		.read_count = sh_cmt_read32,
219 		.write_count = sh_cmt_write32,
220 	},
221 	[SH_CMT1_RCAR_GEN2] = {
222 		.model = SH_CMT1_RCAR_GEN2,
223 		.channels_mask = 0xff,
224 		.width = 32,
225 		.overflow_bit = SH_CMT32_CMCSR_CMF,
226 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 		.read_control = sh_cmt_read32,
228 		.write_control = sh_cmt_write32,
229 		.read_count = sh_cmt_read32,
230 		.write_count = sh_cmt_write32,
231 	},
232 };
233 
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237 
238 #define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
239 
240 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
241 {
242 	if (ch->iostart)
243 		return ch->cmt->info->read_control(ch->iostart, 0);
244 	else
245 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
246 }
247 
248 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
249 {
250 	if (ch->iostart)
251 		ch->cmt->info->write_control(ch->iostart, 0, value);
252 	else
253 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255 
256 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260 
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
262 {
263 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
264 }
265 
266 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
267 {
268 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
269 }
270 
271 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
272 {
273 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
274 }
275 
276 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
277 {
278 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
279 }
280 
281 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
282 {
283 	u32 v1, v2, v3;
284 	u32 o1, o2;
285 
286 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
287 
288 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
289 	do {
290 		o2 = o1;
291 		v1 = sh_cmt_read_cmcnt(ch);
292 		v2 = sh_cmt_read_cmcnt(ch);
293 		v3 = sh_cmt_read_cmcnt(ch);
294 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
295 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
296 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
297 
298 	*has_wrapped = o1;
299 	return v2;
300 }
301 
302 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
303 {
304 	unsigned long flags;
305 	u32 value;
306 
307 	/* start stop register shared by multiple timer channels */
308 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
309 	value = sh_cmt_read_cmstr(ch);
310 
311 	if (start)
312 		value |= 1 << ch->timer_bit;
313 	else
314 		value &= ~(1 << ch->timer_bit);
315 
316 	sh_cmt_write_cmstr(ch, value);
317 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
318 }
319 
320 static int sh_cmt_enable(struct sh_cmt_channel *ch)
321 {
322 	int k, ret;
323 
324 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
325 
326 	/* enable clock */
327 	ret = clk_enable(ch->cmt->clk);
328 	if (ret) {
329 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
330 			ch->index);
331 		goto err0;
332 	}
333 
334 	/* make sure channel is disabled */
335 	sh_cmt_start_stop_ch(ch, 0);
336 
337 	/* configure channel, periodic mode and maximum timeout */
338 	if (ch->cmt->info->width == 16) {
339 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
340 				   SH_CMT16_CMCSR_CKS512);
341 	} else {
342 		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
343 			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
344 		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
345 				   SH_CMT32_CMCSR_CMR_IRQ |
346 				   SH_CMT32_CMCSR_CKS_RCLK8);
347 	}
348 
349 	sh_cmt_write_cmcor(ch, 0xffffffff);
350 	sh_cmt_write_cmcnt(ch, 0);
351 
352 	/*
353 	 * According to the sh73a0 user's manual, as CMCNT can be operated
354 	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
355 	 * modifying CMCNT register; two RCLK cycles are necessary before
356 	 * this register is either read or any modification of the value
357 	 * it holds is reflected in the LSI's actual operation.
358 	 *
359 	 * While at it, we're supposed to clear out the CMCNT as of this
360 	 * moment, so make sure it's processed properly here.  This will
361 	 * take RCLKx2 at maximum.
362 	 */
363 	for (k = 0; k < 100; k++) {
364 		if (!sh_cmt_read_cmcnt(ch))
365 			break;
366 		udelay(1);
367 	}
368 
369 	if (sh_cmt_read_cmcnt(ch)) {
370 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
371 			ch->index);
372 		ret = -ETIMEDOUT;
373 		goto err1;
374 	}
375 
376 	/* enable channel */
377 	sh_cmt_start_stop_ch(ch, 1);
378 	return 0;
379  err1:
380 	/* stop clock */
381 	clk_disable(ch->cmt->clk);
382 
383  err0:
384 	return ret;
385 }
386 
387 static void sh_cmt_disable(struct sh_cmt_channel *ch)
388 {
389 	/* disable channel */
390 	sh_cmt_start_stop_ch(ch, 0);
391 
392 	/* disable interrupts in CMT block */
393 	sh_cmt_write_cmcsr(ch, 0);
394 
395 	/* stop clock */
396 	clk_disable(ch->cmt->clk);
397 
398 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
399 }
400 
401 /* private flags */
402 #define FLAG_CLOCKEVENT (1 << 0)
403 #define FLAG_CLOCKSOURCE (1 << 1)
404 #define FLAG_REPROGRAM (1 << 2)
405 #define FLAG_SKIPEVENT (1 << 3)
406 #define FLAG_IRQCONTEXT (1 << 4)
407 
408 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
409 					      int absolute)
410 {
411 	u32 value = ch->next_match_value;
412 	u32 new_match;
413 	u32 delay = 0;
414 	u32 now = 0;
415 	u32 has_wrapped;
416 
417 	now = sh_cmt_get_counter(ch, &has_wrapped);
418 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
419 
420 	if (has_wrapped) {
421 		/* we're competing with the interrupt handler.
422 		 *  -> let the interrupt handler reprogram the timer.
423 		 *  -> interrupt number two handles the event.
424 		 */
425 		ch->flags |= FLAG_SKIPEVENT;
426 		return;
427 	}
428 
429 	if (absolute)
430 		now = 0;
431 
432 	do {
433 		/* reprogram the timer hardware,
434 		 * but don't save the new match value yet.
435 		 */
436 		new_match = now + value + delay;
437 		if (new_match > ch->max_match_value)
438 			new_match = ch->max_match_value;
439 
440 		sh_cmt_write_cmcor(ch, new_match);
441 
442 		now = sh_cmt_get_counter(ch, &has_wrapped);
443 		if (has_wrapped && (new_match > ch->match_value)) {
444 			/* we are changing to a greater match value,
445 			 * so this wrap must be caused by the counter
446 			 * matching the old value.
447 			 * -> first interrupt reprograms the timer.
448 			 * -> interrupt number two handles the event.
449 			 */
450 			ch->flags |= FLAG_SKIPEVENT;
451 			break;
452 		}
453 
454 		if (has_wrapped) {
455 			/* we are changing to a smaller match value,
456 			 * so the wrap must be caused by the counter
457 			 * matching the new value.
458 			 * -> save programmed match value.
459 			 * -> let isr handle the event.
460 			 */
461 			ch->match_value = new_match;
462 			break;
463 		}
464 
465 		/* be safe: verify hardware settings */
466 		if (now < new_match) {
467 			/* timer value is below match value, all good.
468 			 * this makes sure we won't miss any match events.
469 			 * -> save programmed match value.
470 			 * -> let isr handle the event.
471 			 */
472 			ch->match_value = new_match;
473 			break;
474 		}
475 
476 		/* the counter has reached a value greater
477 		 * than our new match value. and since the
478 		 * has_wrapped flag isn't set we must have
479 		 * programmed a too close event.
480 		 * -> increase delay and retry.
481 		 */
482 		if (delay)
483 			delay <<= 1;
484 		else
485 			delay = 1;
486 
487 		if (!delay)
488 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
489 				 ch->index);
490 
491 	} while (delay);
492 }
493 
494 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
495 {
496 	if (delta > ch->max_match_value)
497 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
498 			 ch->index);
499 
500 	ch->next_match_value = delta;
501 	sh_cmt_clock_event_program_verify(ch, 0);
502 }
503 
504 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
505 {
506 	unsigned long flags;
507 
508 	raw_spin_lock_irqsave(&ch->lock, flags);
509 	__sh_cmt_set_next(ch, delta);
510 	raw_spin_unlock_irqrestore(&ch->lock, flags);
511 }
512 
513 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
514 {
515 	struct sh_cmt_channel *ch = dev_id;
516 
517 	/* clear flags */
518 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
519 			   ch->cmt->info->clear_bits);
520 
521 	/* update clock source counter to begin with if enabled
522 	 * the wrap flag should be cleared by the timer specific
523 	 * isr before we end up here.
524 	 */
525 	if (ch->flags & FLAG_CLOCKSOURCE)
526 		ch->total_cycles += ch->match_value + 1;
527 
528 	if (!(ch->flags & FLAG_REPROGRAM))
529 		ch->next_match_value = ch->max_match_value;
530 
531 	ch->flags |= FLAG_IRQCONTEXT;
532 
533 	if (ch->flags & FLAG_CLOCKEVENT) {
534 		if (!(ch->flags & FLAG_SKIPEVENT)) {
535 			if (clockevent_state_oneshot(&ch->ced)) {
536 				ch->next_match_value = ch->max_match_value;
537 				ch->flags |= FLAG_REPROGRAM;
538 			}
539 
540 			ch->ced.event_handler(&ch->ced);
541 		}
542 	}
543 
544 	ch->flags &= ~FLAG_SKIPEVENT;
545 
546 	if (ch->flags & FLAG_REPROGRAM) {
547 		ch->flags &= ~FLAG_REPROGRAM;
548 		sh_cmt_clock_event_program_verify(ch, 1);
549 
550 		if (ch->flags & FLAG_CLOCKEVENT)
551 			if ((clockevent_state_shutdown(&ch->ced))
552 			    || (ch->match_value == ch->next_match_value))
553 				ch->flags &= ~FLAG_REPROGRAM;
554 	}
555 
556 	ch->flags &= ~FLAG_IRQCONTEXT;
557 
558 	return IRQ_HANDLED;
559 }
560 
561 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
562 {
563 	int ret = 0;
564 	unsigned long flags;
565 
566 	if (flag & FLAG_CLOCKSOURCE)
567 		pm_runtime_get_sync(&ch->cmt->pdev->dev);
568 
569 	raw_spin_lock_irqsave(&ch->lock, flags);
570 
571 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
572 		if (flag & FLAG_CLOCKEVENT)
573 			pm_runtime_get_sync(&ch->cmt->pdev->dev);
574 		ret = sh_cmt_enable(ch);
575 	}
576 
577 	if (ret)
578 		goto out;
579 	ch->flags |= flag;
580 
581 	/* setup timeout if no clockevent */
582 	if (ch->cmt->num_channels == 1 &&
583 	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
584 		__sh_cmt_set_next(ch, ch->max_match_value);
585  out:
586 	raw_spin_unlock_irqrestore(&ch->lock, flags);
587 
588 	return ret;
589 }
590 
591 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
592 {
593 	unsigned long flags;
594 	unsigned long f;
595 
596 	raw_spin_lock_irqsave(&ch->lock, flags);
597 
598 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
599 	ch->flags &= ~flag;
600 
601 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
602 		sh_cmt_disable(ch);
603 		if (flag & FLAG_CLOCKEVENT)
604 			pm_runtime_put(&ch->cmt->pdev->dev);
605 	}
606 
607 	/* adjust the timeout to maximum if only clocksource left */
608 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
609 		__sh_cmt_set_next(ch, ch->max_match_value);
610 
611 	raw_spin_unlock_irqrestore(&ch->lock, flags);
612 
613 	if (flag & FLAG_CLOCKSOURCE)
614 		pm_runtime_put(&ch->cmt->pdev->dev);
615 }
616 
617 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
618 {
619 	return container_of(cs, struct sh_cmt_channel, cs);
620 }
621 
622 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
623 {
624 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
625 	u32 has_wrapped;
626 
627 	if (ch->cmt->num_channels == 1) {
628 		unsigned long flags;
629 		u64 value;
630 		u32 raw;
631 
632 		raw_spin_lock_irqsave(&ch->lock, flags);
633 		value = ch->total_cycles;
634 		raw = sh_cmt_get_counter(ch, &has_wrapped);
635 
636 		if (unlikely(has_wrapped))
637 			raw += ch->match_value + 1;
638 		raw_spin_unlock_irqrestore(&ch->lock, flags);
639 
640 		return value + raw;
641 	}
642 
643 	return sh_cmt_get_counter(ch, &has_wrapped);
644 }
645 
646 static int sh_cmt_clocksource_enable(struct clocksource *cs)
647 {
648 	int ret;
649 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
650 
651 	WARN_ON(ch->cs_enabled);
652 
653 	ch->total_cycles = 0;
654 
655 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
656 	if (!ret)
657 		ch->cs_enabled = true;
658 
659 	return ret;
660 }
661 
662 static void sh_cmt_clocksource_disable(struct clocksource *cs)
663 {
664 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
665 
666 	WARN_ON(!ch->cs_enabled);
667 
668 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
669 	ch->cs_enabled = false;
670 }
671 
672 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
673 {
674 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
675 
676 	if (!ch->cs_enabled)
677 		return;
678 
679 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
680 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
681 }
682 
683 static void sh_cmt_clocksource_resume(struct clocksource *cs)
684 {
685 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
686 
687 	if (!ch->cs_enabled)
688 		return;
689 
690 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
691 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
692 }
693 
694 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
695 				       const char *name)
696 {
697 	struct clocksource *cs = &ch->cs;
698 
699 	cs->name = name;
700 	cs->rating = 125;
701 	cs->read = sh_cmt_clocksource_read;
702 	cs->enable = sh_cmt_clocksource_enable;
703 	cs->disable = sh_cmt_clocksource_disable;
704 	cs->suspend = sh_cmt_clocksource_suspend;
705 	cs->resume = sh_cmt_clocksource_resume;
706 	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
707 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
708 
709 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
710 		 ch->index);
711 
712 	clocksource_register_hz(cs, ch->cmt->rate);
713 	return 0;
714 }
715 
716 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
717 {
718 	return container_of(ced, struct sh_cmt_channel, ced);
719 }
720 
721 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
722 {
723 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
724 
725 	if (periodic)
726 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
727 	else
728 		sh_cmt_set_next(ch, ch->max_match_value);
729 }
730 
731 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
732 {
733 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
734 
735 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
736 	return 0;
737 }
738 
739 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
740 					int periodic)
741 {
742 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
743 
744 	/* deal with old setting first */
745 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
746 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
747 
748 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
749 		 ch->index, periodic ? "periodic" : "oneshot");
750 	sh_cmt_clock_event_start(ch, periodic);
751 	return 0;
752 }
753 
754 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
755 {
756 	return sh_cmt_clock_event_set_state(ced, 0);
757 }
758 
759 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
760 {
761 	return sh_cmt_clock_event_set_state(ced, 1);
762 }
763 
764 static int sh_cmt_clock_event_next(unsigned long delta,
765 				   struct clock_event_device *ced)
766 {
767 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
768 
769 	BUG_ON(!clockevent_state_oneshot(ced));
770 	if (likely(ch->flags & FLAG_IRQCONTEXT))
771 		ch->next_match_value = delta - 1;
772 	else
773 		sh_cmt_set_next(ch, delta - 1);
774 
775 	return 0;
776 }
777 
778 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
779 {
780 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
781 
782 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
783 	clk_unprepare(ch->cmt->clk);
784 }
785 
786 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
787 {
788 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
789 
790 	clk_prepare(ch->cmt->clk);
791 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
792 }
793 
794 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
795 				      const char *name)
796 {
797 	struct clock_event_device *ced = &ch->ced;
798 	int irq;
799 	int ret;
800 
801 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
802 	if (irq < 0)
803 		return irq;
804 
805 	ret = request_irq(irq, sh_cmt_interrupt,
806 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
807 			  dev_name(&ch->cmt->pdev->dev), ch);
808 	if (ret) {
809 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
810 			ch->index, irq);
811 		return ret;
812 	}
813 
814 	ced->name = name;
815 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
816 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
817 	ced->rating = 125;
818 	ced->cpumask = cpu_possible_mask;
819 	ced->set_next_event = sh_cmt_clock_event_next;
820 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
821 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
822 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
823 	ced->suspend = sh_cmt_clock_event_suspend;
824 	ced->resume = sh_cmt_clock_event_resume;
825 
826 	/* TODO: calculate good shift from rate and counter bit width */
827 	ced->shift = 32;
828 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
829 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
830 	ced->max_delta_ticks = ch->max_match_value;
831 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
832 	ced->min_delta_ticks = 0x1f;
833 
834 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
835 		 ch->index);
836 	clockevents_register_device(ced);
837 
838 	return 0;
839 }
840 
841 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
842 			   bool clockevent, bool clocksource)
843 {
844 	int ret;
845 
846 	if (clockevent) {
847 		ch->cmt->has_clockevent = true;
848 		ret = sh_cmt_register_clockevent(ch, name);
849 		if (ret < 0)
850 			return ret;
851 	}
852 
853 	if (clocksource) {
854 		ch->cmt->has_clocksource = true;
855 		sh_cmt_register_clocksource(ch, name);
856 	}
857 
858 	return 0;
859 }
860 
861 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
862 				unsigned int hwidx, bool clockevent,
863 				bool clocksource, struct sh_cmt_device *cmt)
864 {
865 	u32 value;
866 	int ret;
867 
868 	/* Skip unused channels. */
869 	if (!clockevent && !clocksource)
870 		return 0;
871 
872 	ch->cmt = cmt;
873 	ch->index = index;
874 	ch->hwidx = hwidx;
875 	ch->timer_bit = hwidx;
876 
877 	/*
878 	 * Compute the address of the channel control register block. For the
879 	 * timers with a per-channel start/stop register, compute its address
880 	 * as well.
881 	 */
882 	switch (cmt->info->model) {
883 	case SH_CMT_16BIT:
884 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
885 		break;
886 	case SH_CMT_32BIT:
887 	case SH_CMT_48BIT:
888 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
889 		break;
890 	case SH_CMT0_RCAR_GEN2:
891 	case SH_CMT1_RCAR_GEN2:
892 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
893 		ch->ioctrl = ch->iostart + 0x10;
894 		ch->timer_bit = 0;
895 
896 		/* Enable the clock supply to the channel */
897 		value = ioread32(cmt->mapbase + CMCLKE);
898 		value |= BIT(hwidx);
899 		iowrite32(value, cmt->mapbase + CMCLKE);
900 		break;
901 	}
902 
903 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
904 		ch->max_match_value = ~0;
905 	else
906 		ch->max_match_value = (1 << cmt->info->width) - 1;
907 
908 	ch->match_value = ch->max_match_value;
909 	raw_spin_lock_init(&ch->lock);
910 
911 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
912 			      clockevent, clocksource);
913 	if (ret) {
914 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
915 			ch->index);
916 		return ret;
917 	}
918 	ch->cs_enabled = false;
919 
920 	return 0;
921 }
922 
923 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
924 {
925 	struct resource *mem;
926 
927 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
928 	if (!mem) {
929 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
930 		return -ENXIO;
931 	}
932 
933 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
934 	if (cmt->mapbase == NULL) {
935 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
936 		return -ENXIO;
937 	}
938 
939 	return 0;
940 }
941 
942 static const struct platform_device_id sh_cmt_id_table[] = {
943 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
944 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
945 	{ }
946 };
947 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
948 
949 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
950 	{
951 		/* deprecated, preserved for backward compatibility */
952 		.compatible = "renesas,cmt-48",
953 		.data = &sh_cmt_info[SH_CMT_48BIT]
954 	},
955 	{
956 		/* deprecated, preserved for backward compatibility */
957 		.compatible = "renesas,cmt-48-gen2",
958 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
959 	},
960 	{
961 		.compatible = "renesas,r8a7740-cmt1",
962 		.data = &sh_cmt_info[SH_CMT_48BIT]
963 	},
964 	{
965 		.compatible = "renesas,sh73a0-cmt1",
966 		.data = &sh_cmt_info[SH_CMT_48BIT]
967 	},
968 	{
969 		.compatible = "renesas,rcar-gen2-cmt0",
970 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
971 	},
972 	{
973 		.compatible = "renesas,rcar-gen2-cmt1",
974 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
975 	},
976 	{
977 		.compatible = "renesas,rcar-gen3-cmt0",
978 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
979 	},
980 	{
981 		.compatible = "renesas,rcar-gen3-cmt1",
982 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
983 	},
984 	{ }
985 };
986 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
987 
988 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
989 {
990 	unsigned int mask;
991 	unsigned int i;
992 	int ret;
993 
994 	cmt->pdev = pdev;
995 	raw_spin_lock_init(&cmt->lock);
996 
997 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
998 		cmt->info = of_device_get_match_data(&pdev->dev);
999 		cmt->hw_channels = cmt->info->channels_mask;
1000 	} else if (pdev->dev.platform_data) {
1001 		struct sh_timer_config *cfg = pdev->dev.platform_data;
1002 		const struct platform_device_id *id = pdev->id_entry;
1003 
1004 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1005 		cmt->hw_channels = cfg->channels_mask;
1006 	} else {
1007 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1008 		return -ENXIO;
1009 	}
1010 
1011 	/* Get hold of clock. */
1012 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1013 	if (IS_ERR(cmt->clk)) {
1014 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1015 		return PTR_ERR(cmt->clk);
1016 	}
1017 
1018 	ret = clk_prepare(cmt->clk);
1019 	if (ret < 0)
1020 		goto err_clk_put;
1021 
1022 	/* Determine clock rate. */
1023 	ret = clk_enable(cmt->clk);
1024 	if (ret < 0)
1025 		goto err_clk_unprepare;
1026 
1027 	if (cmt->info->width == 16)
1028 		cmt->rate = clk_get_rate(cmt->clk) / 512;
1029 	else
1030 		cmt->rate = clk_get_rate(cmt->clk) / 8;
1031 
1032 	/* Map the memory resource(s). */
1033 	ret = sh_cmt_map_memory(cmt);
1034 	if (ret < 0)
1035 		goto err_clk_disable;
1036 
1037 	/* Allocate and setup the channels. */
1038 	cmt->num_channels = hweight8(cmt->hw_channels);
1039 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1040 				GFP_KERNEL);
1041 	if (cmt->channels == NULL) {
1042 		ret = -ENOMEM;
1043 		goto err_unmap;
1044 	}
1045 
1046 	/*
1047 	 * Use the first channel as a clock event device and the second channel
1048 	 * as a clock source. If only one channel is available use it for both.
1049 	 */
1050 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1051 		unsigned int hwidx = ffs(mask) - 1;
1052 		bool clocksource = i == 1 || cmt->num_channels == 1;
1053 		bool clockevent = i == 0;
1054 
1055 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1056 					   clockevent, clocksource, cmt);
1057 		if (ret < 0)
1058 			goto err_unmap;
1059 
1060 		mask &= ~(1 << hwidx);
1061 	}
1062 
1063 	clk_disable(cmt->clk);
1064 
1065 	platform_set_drvdata(pdev, cmt);
1066 
1067 	return 0;
1068 
1069 err_unmap:
1070 	kfree(cmt->channels);
1071 	iounmap(cmt->mapbase);
1072 err_clk_disable:
1073 	clk_disable(cmt->clk);
1074 err_clk_unprepare:
1075 	clk_unprepare(cmt->clk);
1076 err_clk_put:
1077 	clk_put(cmt->clk);
1078 	return ret;
1079 }
1080 
1081 static int sh_cmt_probe(struct platform_device *pdev)
1082 {
1083 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1084 	int ret;
1085 
1086 	if (!is_sh_early_platform_device(pdev)) {
1087 		pm_runtime_set_active(&pdev->dev);
1088 		pm_runtime_enable(&pdev->dev);
1089 	}
1090 
1091 	if (cmt) {
1092 		dev_info(&pdev->dev, "kept as earlytimer\n");
1093 		goto out;
1094 	}
1095 
1096 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1097 	if (cmt == NULL)
1098 		return -ENOMEM;
1099 
1100 	ret = sh_cmt_setup(cmt, pdev);
1101 	if (ret) {
1102 		kfree(cmt);
1103 		pm_runtime_idle(&pdev->dev);
1104 		return ret;
1105 	}
1106 	if (is_sh_early_platform_device(pdev))
1107 		return 0;
1108 
1109  out:
1110 	if (cmt->has_clockevent || cmt->has_clocksource)
1111 		pm_runtime_irq_safe(&pdev->dev);
1112 	else
1113 		pm_runtime_idle(&pdev->dev);
1114 
1115 	return 0;
1116 }
1117 
1118 static int sh_cmt_remove(struct platform_device *pdev)
1119 {
1120 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1121 }
1122 
1123 static struct platform_driver sh_cmt_device_driver = {
1124 	.probe		= sh_cmt_probe,
1125 	.remove		= sh_cmt_remove,
1126 	.driver		= {
1127 		.name	= "sh_cmt",
1128 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1129 	},
1130 	.id_table	= sh_cmt_id_table,
1131 };
1132 
1133 static int __init sh_cmt_init(void)
1134 {
1135 	return platform_driver_register(&sh_cmt_device_driver);
1136 }
1137 
1138 static void __exit sh_cmt_exit(void)
1139 {
1140 	platform_driver_unregister(&sh_cmt_device_driver);
1141 }
1142 
1143 #ifdef CONFIG_SUPERH
1144 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1145 #endif
1146 
1147 subsys_initcall(sh_cmt_init);
1148 module_exit(sh_cmt_exit);
1149 
1150 MODULE_AUTHOR("Magnus Damm");
1151 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1152 MODULE_LICENSE("GPL v2");
1153