1 /* 2 * SuperH Timer Support - CMT 3 * 4 * Copyright (C) 2008 Magnus Damm 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/init.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/ioport.h> 25 #include <linux/irq.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/platform_device.h> 30 #include <linux/pm_domain.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/sh_timer.h> 33 #include <linux/slab.h> 34 #include <linux/spinlock.h> 35 36 struct sh_cmt_device; 37 38 /* 39 * The CMT comes in 5 different identified flavours, depending not only on the 40 * SoC but also on the particular instance. The following table lists the main 41 * characteristics of those flavours. 42 * 43 * 16B 32B 32B-F 48B R-Car Gen2 44 * ----------------------------------------------------------------------------- 45 * Channels 2 1/4 1 6 2/8 46 * Control Width 16 16 16 16 32 47 * Counter Width 16 32 32 32/48 32/48 48 * Shared Start/Stop Y Y Y Y N 49 * 50 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register 51 * located in the channel registers block. All other versions have a shared 52 * start/stop register located in the global space. 53 * 54 * Channels are indexed from 0 to N-1 in the documentation. The channel index 55 * infers the start/stop bit position in the control register and the channel 56 * registers block address. Some CMT instances have a subset of channels 57 * available, in which case the index in the documentation doesn't match the 58 * "real" index as implemented in hardware. This is for instance the case with 59 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0 60 * in the documentation but using start/stop bit 5 and having its registers 61 * block at 0x60. 62 * 63 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit 64 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable. 65 */ 66 67 enum sh_cmt_model { 68 SH_CMT_16BIT, 69 SH_CMT_32BIT, 70 SH_CMT_48BIT, 71 SH_CMT0_RCAR_GEN2, 72 SH_CMT1_RCAR_GEN2, 73 }; 74 75 struct sh_cmt_info { 76 enum sh_cmt_model model; 77 78 unsigned int channels_mask; 79 80 unsigned long width; /* 16 or 32 bit version of hardware block */ 81 unsigned long overflow_bit; 82 unsigned long clear_bits; 83 84 /* callbacks for CMSTR and CMCSR access */ 85 unsigned long (*read_control)(void __iomem *base, unsigned long offs); 86 void (*write_control)(void __iomem *base, unsigned long offs, 87 unsigned long value); 88 89 /* callbacks for CMCNT and CMCOR access */ 90 unsigned long (*read_count)(void __iomem *base, unsigned long offs); 91 void (*write_count)(void __iomem *base, unsigned long offs, 92 unsigned long value); 93 }; 94 95 struct sh_cmt_channel { 96 struct sh_cmt_device *cmt; 97 98 unsigned int index; /* Index in the documentation */ 99 unsigned int hwidx; /* Real hardware index */ 100 101 void __iomem *iostart; 102 void __iomem *ioctrl; 103 104 unsigned int timer_bit; 105 unsigned long flags; 106 unsigned long match_value; 107 unsigned long next_match_value; 108 unsigned long max_match_value; 109 raw_spinlock_t lock; 110 struct clock_event_device ced; 111 struct clocksource cs; 112 unsigned long total_cycles; 113 bool cs_enabled; 114 }; 115 116 struct sh_cmt_device { 117 struct platform_device *pdev; 118 119 const struct sh_cmt_info *info; 120 121 void __iomem *mapbase; 122 struct clk *clk; 123 unsigned long rate; 124 125 raw_spinlock_t lock; /* Protect the shared start/stop register */ 126 127 struct sh_cmt_channel *channels; 128 unsigned int num_channels; 129 unsigned int hw_channels; 130 131 bool has_clockevent; 132 bool has_clocksource; 133 }; 134 135 #define SH_CMT16_CMCSR_CMF (1 << 7) 136 #define SH_CMT16_CMCSR_CMIE (1 << 6) 137 #define SH_CMT16_CMCSR_CKS8 (0 << 0) 138 #define SH_CMT16_CMCSR_CKS32 (1 << 0) 139 #define SH_CMT16_CMCSR_CKS128 (2 << 0) 140 #define SH_CMT16_CMCSR_CKS512 (3 << 0) 141 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0) 142 143 #define SH_CMT32_CMCSR_CMF (1 << 15) 144 #define SH_CMT32_CMCSR_OVF (1 << 14) 145 #define SH_CMT32_CMCSR_WRFLG (1 << 13) 146 #define SH_CMT32_CMCSR_STTF (1 << 12) 147 #define SH_CMT32_CMCSR_STPF (1 << 11) 148 #define SH_CMT32_CMCSR_SSIE (1 << 10) 149 #define SH_CMT32_CMCSR_CMS (1 << 9) 150 #define SH_CMT32_CMCSR_CMM (1 << 8) 151 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7) 152 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4) 153 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4) 154 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4) 155 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4) 156 #define SH_CMT32_CMCSR_DBGIVD (1 << 3) 157 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0) 158 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0) 159 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0) 160 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0) 161 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0) 162 163 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs) 164 { 165 return ioread16(base + (offs << 1)); 166 } 167 168 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs) 169 { 170 return ioread32(base + (offs << 2)); 171 } 172 173 static void sh_cmt_write16(void __iomem *base, unsigned long offs, 174 unsigned long value) 175 { 176 iowrite16(value, base + (offs << 1)); 177 } 178 179 static void sh_cmt_write32(void __iomem *base, unsigned long offs, 180 unsigned long value) 181 { 182 iowrite32(value, base + (offs << 2)); 183 } 184 185 static const struct sh_cmt_info sh_cmt_info[] = { 186 [SH_CMT_16BIT] = { 187 .model = SH_CMT_16BIT, 188 .width = 16, 189 .overflow_bit = SH_CMT16_CMCSR_CMF, 190 .clear_bits = ~SH_CMT16_CMCSR_CMF, 191 .read_control = sh_cmt_read16, 192 .write_control = sh_cmt_write16, 193 .read_count = sh_cmt_read16, 194 .write_count = sh_cmt_write16, 195 }, 196 [SH_CMT_32BIT] = { 197 .model = SH_CMT_32BIT, 198 .width = 32, 199 .overflow_bit = SH_CMT32_CMCSR_CMF, 200 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), 201 .read_control = sh_cmt_read16, 202 .write_control = sh_cmt_write16, 203 .read_count = sh_cmt_read32, 204 .write_count = sh_cmt_write32, 205 }, 206 [SH_CMT_48BIT] = { 207 .model = SH_CMT_48BIT, 208 .channels_mask = 0x3f, 209 .width = 32, 210 .overflow_bit = SH_CMT32_CMCSR_CMF, 211 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), 212 .read_control = sh_cmt_read32, 213 .write_control = sh_cmt_write32, 214 .read_count = sh_cmt_read32, 215 .write_count = sh_cmt_write32, 216 }, 217 [SH_CMT0_RCAR_GEN2] = { 218 .model = SH_CMT0_RCAR_GEN2, 219 .channels_mask = 0x60, 220 .width = 32, 221 .overflow_bit = SH_CMT32_CMCSR_CMF, 222 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), 223 .read_control = sh_cmt_read32, 224 .write_control = sh_cmt_write32, 225 .read_count = sh_cmt_read32, 226 .write_count = sh_cmt_write32, 227 }, 228 [SH_CMT1_RCAR_GEN2] = { 229 .model = SH_CMT1_RCAR_GEN2, 230 .channels_mask = 0xff, 231 .width = 32, 232 .overflow_bit = SH_CMT32_CMCSR_CMF, 233 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), 234 .read_control = sh_cmt_read32, 235 .write_control = sh_cmt_write32, 236 .read_count = sh_cmt_read32, 237 .write_count = sh_cmt_write32, 238 }, 239 }; 240 241 #define CMCSR 0 /* channel register */ 242 #define CMCNT 1 /* channel register */ 243 #define CMCOR 2 /* channel register */ 244 245 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch) 246 { 247 if (ch->iostart) 248 return ch->cmt->info->read_control(ch->iostart, 0); 249 else 250 return ch->cmt->info->read_control(ch->cmt->mapbase, 0); 251 } 252 253 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, 254 unsigned long value) 255 { 256 if (ch->iostart) 257 ch->cmt->info->write_control(ch->iostart, 0, value); 258 else 259 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value); 260 } 261 262 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch) 263 { 264 return ch->cmt->info->read_control(ch->ioctrl, CMCSR); 265 } 266 267 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, 268 unsigned long value) 269 { 270 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value); 271 } 272 273 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch) 274 { 275 return ch->cmt->info->read_count(ch->ioctrl, CMCNT); 276 } 277 278 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, 279 unsigned long value) 280 { 281 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value); 282 } 283 284 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, 285 unsigned long value) 286 { 287 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value); 288 } 289 290 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch, 291 int *has_wrapped) 292 { 293 unsigned long v1, v2, v3; 294 int o1, o2; 295 296 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; 297 298 /* Make sure the timer value is stable. Stolen from acpi_pm.c */ 299 do { 300 o2 = o1; 301 v1 = sh_cmt_read_cmcnt(ch); 302 v2 = sh_cmt_read_cmcnt(ch); 303 v3 = sh_cmt_read_cmcnt(ch); 304 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; 305 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3) 306 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); 307 308 *has_wrapped = o1; 309 return v2; 310 } 311 312 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start) 313 { 314 unsigned long flags, value; 315 316 /* start stop register shared by multiple timer channels */ 317 raw_spin_lock_irqsave(&ch->cmt->lock, flags); 318 value = sh_cmt_read_cmstr(ch); 319 320 if (start) 321 value |= 1 << ch->timer_bit; 322 else 323 value &= ~(1 << ch->timer_bit); 324 325 sh_cmt_write_cmstr(ch, value); 326 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags); 327 } 328 329 static int sh_cmt_enable(struct sh_cmt_channel *ch) 330 { 331 int k, ret; 332 333 pm_runtime_get_sync(&ch->cmt->pdev->dev); 334 dev_pm_syscore_device(&ch->cmt->pdev->dev, true); 335 336 /* enable clock */ 337 ret = clk_enable(ch->cmt->clk); 338 if (ret) { 339 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n", 340 ch->index); 341 goto err0; 342 } 343 344 /* make sure channel is disabled */ 345 sh_cmt_start_stop_ch(ch, 0); 346 347 /* configure channel, periodic mode and maximum timeout */ 348 if (ch->cmt->info->width == 16) { 349 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE | 350 SH_CMT16_CMCSR_CKS512); 351 } else { 352 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM | 353 SH_CMT32_CMCSR_CMTOUT_IE | 354 SH_CMT32_CMCSR_CMR_IRQ | 355 SH_CMT32_CMCSR_CKS_RCLK8); 356 } 357 358 sh_cmt_write_cmcor(ch, 0xffffffff); 359 sh_cmt_write_cmcnt(ch, 0); 360 361 /* 362 * According to the sh73a0 user's manual, as CMCNT can be operated 363 * only by the RCLK (Pseudo 32 KHz), there's one restriction on 364 * modifying CMCNT register; two RCLK cycles are necessary before 365 * this register is either read or any modification of the value 366 * it holds is reflected in the LSI's actual operation. 367 * 368 * While at it, we're supposed to clear out the CMCNT as of this 369 * moment, so make sure it's processed properly here. This will 370 * take RCLKx2 at maximum. 371 */ 372 for (k = 0; k < 100; k++) { 373 if (!sh_cmt_read_cmcnt(ch)) 374 break; 375 udelay(1); 376 } 377 378 if (sh_cmt_read_cmcnt(ch)) { 379 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n", 380 ch->index); 381 ret = -ETIMEDOUT; 382 goto err1; 383 } 384 385 /* enable channel */ 386 sh_cmt_start_stop_ch(ch, 1); 387 return 0; 388 err1: 389 /* stop clock */ 390 clk_disable(ch->cmt->clk); 391 392 err0: 393 return ret; 394 } 395 396 static void sh_cmt_disable(struct sh_cmt_channel *ch) 397 { 398 /* disable channel */ 399 sh_cmt_start_stop_ch(ch, 0); 400 401 /* disable interrupts in CMT block */ 402 sh_cmt_write_cmcsr(ch, 0); 403 404 /* stop clock */ 405 clk_disable(ch->cmt->clk); 406 407 dev_pm_syscore_device(&ch->cmt->pdev->dev, false); 408 pm_runtime_put(&ch->cmt->pdev->dev); 409 } 410 411 /* private flags */ 412 #define FLAG_CLOCKEVENT (1 << 0) 413 #define FLAG_CLOCKSOURCE (1 << 1) 414 #define FLAG_REPROGRAM (1 << 2) 415 #define FLAG_SKIPEVENT (1 << 3) 416 #define FLAG_IRQCONTEXT (1 << 4) 417 418 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch, 419 int absolute) 420 { 421 unsigned long new_match; 422 unsigned long value = ch->next_match_value; 423 unsigned long delay = 0; 424 unsigned long now = 0; 425 int has_wrapped; 426 427 now = sh_cmt_get_counter(ch, &has_wrapped); 428 ch->flags |= FLAG_REPROGRAM; /* force reprogram */ 429 430 if (has_wrapped) { 431 /* we're competing with the interrupt handler. 432 * -> let the interrupt handler reprogram the timer. 433 * -> interrupt number two handles the event. 434 */ 435 ch->flags |= FLAG_SKIPEVENT; 436 return; 437 } 438 439 if (absolute) 440 now = 0; 441 442 do { 443 /* reprogram the timer hardware, 444 * but don't save the new match value yet. 445 */ 446 new_match = now + value + delay; 447 if (new_match > ch->max_match_value) 448 new_match = ch->max_match_value; 449 450 sh_cmt_write_cmcor(ch, new_match); 451 452 now = sh_cmt_get_counter(ch, &has_wrapped); 453 if (has_wrapped && (new_match > ch->match_value)) { 454 /* we are changing to a greater match value, 455 * so this wrap must be caused by the counter 456 * matching the old value. 457 * -> first interrupt reprograms the timer. 458 * -> interrupt number two handles the event. 459 */ 460 ch->flags |= FLAG_SKIPEVENT; 461 break; 462 } 463 464 if (has_wrapped) { 465 /* we are changing to a smaller match value, 466 * so the wrap must be caused by the counter 467 * matching the new value. 468 * -> save programmed match value. 469 * -> let isr handle the event. 470 */ 471 ch->match_value = new_match; 472 break; 473 } 474 475 /* be safe: verify hardware settings */ 476 if (now < new_match) { 477 /* timer value is below match value, all good. 478 * this makes sure we won't miss any match events. 479 * -> save programmed match value. 480 * -> let isr handle the event. 481 */ 482 ch->match_value = new_match; 483 break; 484 } 485 486 /* the counter has reached a value greater 487 * than our new match value. and since the 488 * has_wrapped flag isn't set we must have 489 * programmed a too close event. 490 * -> increase delay and retry. 491 */ 492 if (delay) 493 delay <<= 1; 494 else 495 delay = 1; 496 497 if (!delay) 498 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n", 499 ch->index); 500 501 } while (delay); 502 } 503 504 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) 505 { 506 if (delta > ch->max_match_value) 507 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n", 508 ch->index); 509 510 ch->next_match_value = delta; 511 sh_cmt_clock_event_program_verify(ch, 0); 512 } 513 514 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) 515 { 516 unsigned long flags; 517 518 raw_spin_lock_irqsave(&ch->lock, flags); 519 __sh_cmt_set_next(ch, delta); 520 raw_spin_unlock_irqrestore(&ch->lock, flags); 521 } 522 523 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id) 524 { 525 struct sh_cmt_channel *ch = dev_id; 526 527 /* clear flags */ 528 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) & 529 ch->cmt->info->clear_bits); 530 531 /* update clock source counter to begin with if enabled 532 * the wrap flag should be cleared by the timer specific 533 * isr before we end up here. 534 */ 535 if (ch->flags & FLAG_CLOCKSOURCE) 536 ch->total_cycles += ch->match_value + 1; 537 538 if (!(ch->flags & FLAG_REPROGRAM)) 539 ch->next_match_value = ch->max_match_value; 540 541 ch->flags |= FLAG_IRQCONTEXT; 542 543 if (ch->flags & FLAG_CLOCKEVENT) { 544 if (!(ch->flags & FLAG_SKIPEVENT)) { 545 if (clockevent_state_oneshot(&ch->ced)) { 546 ch->next_match_value = ch->max_match_value; 547 ch->flags |= FLAG_REPROGRAM; 548 } 549 550 ch->ced.event_handler(&ch->ced); 551 } 552 } 553 554 ch->flags &= ~FLAG_SKIPEVENT; 555 556 if (ch->flags & FLAG_REPROGRAM) { 557 ch->flags &= ~FLAG_REPROGRAM; 558 sh_cmt_clock_event_program_verify(ch, 1); 559 560 if (ch->flags & FLAG_CLOCKEVENT) 561 if ((clockevent_state_shutdown(&ch->ced)) 562 || (ch->match_value == ch->next_match_value)) 563 ch->flags &= ~FLAG_REPROGRAM; 564 } 565 566 ch->flags &= ~FLAG_IRQCONTEXT; 567 568 return IRQ_HANDLED; 569 } 570 571 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag) 572 { 573 int ret = 0; 574 unsigned long flags; 575 576 raw_spin_lock_irqsave(&ch->lock, flags); 577 578 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) 579 ret = sh_cmt_enable(ch); 580 581 if (ret) 582 goto out; 583 ch->flags |= flag; 584 585 /* setup timeout if no clockevent */ 586 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT))) 587 __sh_cmt_set_next(ch, ch->max_match_value); 588 out: 589 raw_spin_unlock_irqrestore(&ch->lock, flags); 590 591 return ret; 592 } 593 594 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag) 595 { 596 unsigned long flags; 597 unsigned long f; 598 599 raw_spin_lock_irqsave(&ch->lock, flags); 600 601 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE); 602 ch->flags &= ~flag; 603 604 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) 605 sh_cmt_disable(ch); 606 607 /* adjust the timeout to maximum if only clocksource left */ 608 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE)) 609 __sh_cmt_set_next(ch, ch->max_match_value); 610 611 raw_spin_unlock_irqrestore(&ch->lock, flags); 612 } 613 614 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs) 615 { 616 return container_of(cs, struct sh_cmt_channel, cs); 617 } 618 619 static u64 sh_cmt_clocksource_read(struct clocksource *cs) 620 { 621 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); 622 unsigned long flags, raw; 623 unsigned long value; 624 int has_wrapped; 625 626 raw_spin_lock_irqsave(&ch->lock, flags); 627 value = ch->total_cycles; 628 raw = sh_cmt_get_counter(ch, &has_wrapped); 629 630 if (unlikely(has_wrapped)) 631 raw += ch->match_value + 1; 632 raw_spin_unlock_irqrestore(&ch->lock, flags); 633 634 return value + raw; 635 } 636 637 static int sh_cmt_clocksource_enable(struct clocksource *cs) 638 { 639 int ret; 640 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); 641 642 WARN_ON(ch->cs_enabled); 643 644 ch->total_cycles = 0; 645 646 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE); 647 if (!ret) 648 ch->cs_enabled = true; 649 650 return ret; 651 } 652 653 static void sh_cmt_clocksource_disable(struct clocksource *cs) 654 { 655 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); 656 657 WARN_ON(!ch->cs_enabled); 658 659 sh_cmt_stop(ch, FLAG_CLOCKSOURCE); 660 ch->cs_enabled = false; 661 } 662 663 static void sh_cmt_clocksource_suspend(struct clocksource *cs) 664 { 665 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); 666 667 if (!ch->cs_enabled) 668 return; 669 670 sh_cmt_stop(ch, FLAG_CLOCKSOURCE); 671 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); 672 } 673 674 static void sh_cmt_clocksource_resume(struct clocksource *cs) 675 { 676 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); 677 678 if (!ch->cs_enabled) 679 return; 680 681 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); 682 sh_cmt_start(ch, FLAG_CLOCKSOURCE); 683 } 684 685 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch, 686 const char *name) 687 { 688 struct clocksource *cs = &ch->cs; 689 690 cs->name = name; 691 cs->rating = 125; 692 cs->read = sh_cmt_clocksource_read; 693 cs->enable = sh_cmt_clocksource_enable; 694 cs->disable = sh_cmt_clocksource_disable; 695 cs->suspend = sh_cmt_clocksource_suspend; 696 cs->resume = sh_cmt_clocksource_resume; 697 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8); 698 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; 699 700 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n", 701 ch->index); 702 703 clocksource_register_hz(cs, ch->cmt->rate); 704 return 0; 705 } 706 707 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced) 708 { 709 return container_of(ced, struct sh_cmt_channel, ced); 710 } 711 712 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic) 713 { 714 sh_cmt_start(ch, FLAG_CLOCKEVENT); 715 716 if (periodic) 717 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1); 718 else 719 sh_cmt_set_next(ch, ch->max_match_value); 720 } 721 722 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced) 723 { 724 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); 725 726 sh_cmt_stop(ch, FLAG_CLOCKEVENT); 727 return 0; 728 } 729 730 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced, 731 int periodic) 732 { 733 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); 734 735 /* deal with old setting first */ 736 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) 737 sh_cmt_stop(ch, FLAG_CLOCKEVENT); 738 739 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n", 740 ch->index, periodic ? "periodic" : "oneshot"); 741 sh_cmt_clock_event_start(ch, periodic); 742 return 0; 743 } 744 745 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced) 746 { 747 return sh_cmt_clock_event_set_state(ced, 0); 748 } 749 750 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced) 751 { 752 return sh_cmt_clock_event_set_state(ced, 1); 753 } 754 755 static int sh_cmt_clock_event_next(unsigned long delta, 756 struct clock_event_device *ced) 757 { 758 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); 759 760 BUG_ON(!clockevent_state_oneshot(ced)); 761 if (likely(ch->flags & FLAG_IRQCONTEXT)) 762 ch->next_match_value = delta - 1; 763 else 764 sh_cmt_set_next(ch, delta - 1); 765 766 return 0; 767 } 768 769 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced) 770 { 771 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); 772 773 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); 774 clk_unprepare(ch->cmt->clk); 775 } 776 777 static void sh_cmt_clock_event_resume(struct clock_event_device *ced) 778 { 779 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); 780 781 clk_prepare(ch->cmt->clk); 782 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); 783 } 784 785 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch, 786 const char *name) 787 { 788 struct clock_event_device *ced = &ch->ced; 789 int irq; 790 int ret; 791 792 irq = platform_get_irq(ch->cmt->pdev, ch->index); 793 if (irq < 0) { 794 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n", 795 ch->index); 796 return irq; 797 } 798 799 ret = request_irq(irq, sh_cmt_interrupt, 800 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, 801 dev_name(&ch->cmt->pdev->dev), ch); 802 if (ret) { 803 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n", 804 ch->index, irq); 805 return ret; 806 } 807 808 ced->name = name; 809 ced->features = CLOCK_EVT_FEAT_PERIODIC; 810 ced->features |= CLOCK_EVT_FEAT_ONESHOT; 811 ced->rating = 125; 812 ced->cpumask = cpu_possible_mask; 813 ced->set_next_event = sh_cmt_clock_event_next; 814 ced->set_state_shutdown = sh_cmt_clock_event_shutdown; 815 ced->set_state_periodic = sh_cmt_clock_event_set_periodic; 816 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot; 817 ced->suspend = sh_cmt_clock_event_suspend; 818 ced->resume = sh_cmt_clock_event_resume; 819 820 /* TODO: calculate good shift from rate and counter bit width */ 821 ced->shift = 32; 822 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift); 823 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced); 824 ced->max_delta_ticks = ch->max_match_value; 825 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced); 826 ced->min_delta_ticks = 0x1f; 827 828 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n", 829 ch->index); 830 clockevents_register_device(ced); 831 832 return 0; 833 } 834 835 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name, 836 bool clockevent, bool clocksource) 837 { 838 int ret; 839 840 if (clockevent) { 841 ch->cmt->has_clockevent = true; 842 ret = sh_cmt_register_clockevent(ch, name); 843 if (ret < 0) 844 return ret; 845 } 846 847 if (clocksource) { 848 ch->cmt->has_clocksource = true; 849 sh_cmt_register_clocksource(ch, name); 850 } 851 852 return 0; 853 } 854 855 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index, 856 unsigned int hwidx, bool clockevent, 857 bool clocksource, struct sh_cmt_device *cmt) 858 { 859 int ret; 860 861 /* Skip unused channels. */ 862 if (!clockevent && !clocksource) 863 return 0; 864 865 ch->cmt = cmt; 866 ch->index = index; 867 ch->hwidx = hwidx; 868 ch->timer_bit = hwidx; 869 870 /* 871 * Compute the address of the channel control register block. For the 872 * timers with a per-channel start/stop register, compute its address 873 * as well. 874 */ 875 switch (cmt->info->model) { 876 case SH_CMT_16BIT: 877 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6; 878 break; 879 case SH_CMT_32BIT: 880 case SH_CMT_48BIT: 881 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10; 882 break; 883 case SH_CMT0_RCAR_GEN2: 884 case SH_CMT1_RCAR_GEN2: 885 ch->iostart = cmt->mapbase + ch->hwidx * 0x100; 886 ch->ioctrl = ch->iostart + 0x10; 887 ch->timer_bit = 0; 888 break; 889 } 890 891 if (cmt->info->width == (sizeof(ch->max_match_value) * 8)) 892 ch->max_match_value = ~0; 893 else 894 ch->max_match_value = (1 << cmt->info->width) - 1; 895 896 ch->match_value = ch->max_match_value; 897 raw_spin_lock_init(&ch->lock); 898 899 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev), 900 clockevent, clocksource); 901 if (ret) { 902 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n", 903 ch->index); 904 return ret; 905 } 906 ch->cs_enabled = false; 907 908 return 0; 909 } 910 911 static int sh_cmt_map_memory(struct sh_cmt_device *cmt) 912 { 913 struct resource *mem; 914 915 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0); 916 if (!mem) { 917 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n"); 918 return -ENXIO; 919 } 920 921 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem)); 922 if (cmt->mapbase == NULL) { 923 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n"); 924 return -ENXIO; 925 } 926 927 return 0; 928 } 929 930 static const struct platform_device_id sh_cmt_id_table[] = { 931 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] }, 932 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] }, 933 { } 934 }; 935 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table); 936 937 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = { 938 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] }, 939 { 940 /* deprecated, preserved for backward compatibility */ 941 .compatible = "renesas,cmt-48-gen2", 942 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] 943 }, 944 { .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] }, 945 { .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] }, 946 { } 947 }; 948 MODULE_DEVICE_TABLE(of, sh_cmt_of_table); 949 950 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev) 951 { 952 unsigned int mask; 953 unsigned int i; 954 int ret; 955 956 cmt->pdev = pdev; 957 raw_spin_lock_init(&cmt->lock); 958 959 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { 960 cmt->info = of_device_get_match_data(&pdev->dev); 961 cmt->hw_channels = cmt->info->channels_mask; 962 } else if (pdev->dev.platform_data) { 963 struct sh_timer_config *cfg = pdev->dev.platform_data; 964 const struct platform_device_id *id = pdev->id_entry; 965 966 cmt->info = (const struct sh_cmt_info *)id->driver_data; 967 cmt->hw_channels = cfg->channels_mask; 968 } else { 969 dev_err(&cmt->pdev->dev, "missing platform data\n"); 970 return -ENXIO; 971 } 972 973 /* Get hold of clock. */ 974 cmt->clk = clk_get(&cmt->pdev->dev, "fck"); 975 if (IS_ERR(cmt->clk)) { 976 dev_err(&cmt->pdev->dev, "cannot get clock\n"); 977 return PTR_ERR(cmt->clk); 978 } 979 980 ret = clk_prepare(cmt->clk); 981 if (ret < 0) 982 goto err_clk_put; 983 984 /* Determine clock rate. */ 985 ret = clk_enable(cmt->clk); 986 if (ret < 0) 987 goto err_clk_unprepare; 988 989 if (cmt->info->width == 16) 990 cmt->rate = clk_get_rate(cmt->clk) / 512; 991 else 992 cmt->rate = clk_get_rate(cmt->clk) / 8; 993 994 clk_disable(cmt->clk); 995 996 /* Map the memory resource(s). */ 997 ret = sh_cmt_map_memory(cmt); 998 if (ret < 0) 999 goto err_clk_unprepare; 1000 1001 /* Allocate and setup the channels. */ 1002 cmt->num_channels = hweight8(cmt->hw_channels); 1003 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels), 1004 GFP_KERNEL); 1005 if (cmt->channels == NULL) { 1006 ret = -ENOMEM; 1007 goto err_unmap; 1008 } 1009 1010 /* 1011 * Use the first channel as a clock event device and the second channel 1012 * as a clock source. If only one channel is available use it for both. 1013 */ 1014 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) { 1015 unsigned int hwidx = ffs(mask) - 1; 1016 bool clocksource = i == 1 || cmt->num_channels == 1; 1017 bool clockevent = i == 0; 1018 1019 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx, 1020 clockevent, clocksource, cmt); 1021 if (ret < 0) 1022 goto err_unmap; 1023 1024 mask &= ~(1 << hwidx); 1025 } 1026 1027 platform_set_drvdata(pdev, cmt); 1028 1029 return 0; 1030 1031 err_unmap: 1032 kfree(cmt->channels); 1033 iounmap(cmt->mapbase); 1034 err_clk_unprepare: 1035 clk_unprepare(cmt->clk); 1036 err_clk_put: 1037 clk_put(cmt->clk); 1038 return ret; 1039 } 1040 1041 static int sh_cmt_probe(struct platform_device *pdev) 1042 { 1043 struct sh_cmt_device *cmt = platform_get_drvdata(pdev); 1044 int ret; 1045 1046 if (!is_early_platform_device(pdev)) { 1047 pm_runtime_set_active(&pdev->dev); 1048 pm_runtime_enable(&pdev->dev); 1049 } 1050 1051 if (cmt) { 1052 dev_info(&pdev->dev, "kept as earlytimer\n"); 1053 goto out; 1054 } 1055 1056 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL); 1057 if (cmt == NULL) 1058 return -ENOMEM; 1059 1060 ret = sh_cmt_setup(cmt, pdev); 1061 if (ret) { 1062 kfree(cmt); 1063 pm_runtime_idle(&pdev->dev); 1064 return ret; 1065 } 1066 if (is_early_platform_device(pdev)) 1067 return 0; 1068 1069 out: 1070 if (cmt->has_clockevent || cmt->has_clocksource) 1071 pm_runtime_irq_safe(&pdev->dev); 1072 else 1073 pm_runtime_idle(&pdev->dev); 1074 1075 return 0; 1076 } 1077 1078 static int sh_cmt_remove(struct platform_device *pdev) 1079 { 1080 return -EBUSY; /* cannot unregister clockevent and clocksource */ 1081 } 1082 1083 static struct platform_driver sh_cmt_device_driver = { 1084 .probe = sh_cmt_probe, 1085 .remove = sh_cmt_remove, 1086 .driver = { 1087 .name = "sh_cmt", 1088 .of_match_table = of_match_ptr(sh_cmt_of_table), 1089 }, 1090 .id_table = sh_cmt_id_table, 1091 }; 1092 1093 static int __init sh_cmt_init(void) 1094 { 1095 return platform_driver_register(&sh_cmt_device_driver); 1096 } 1097 1098 static void __exit sh_cmt_exit(void) 1099 { 1100 platform_driver_unregister(&sh_cmt_device_driver); 1101 } 1102 1103 early_platform_init("earlytimer", &sh_cmt_device_driver); 1104 subsys_initcall(sh_cmt_init); 1105 module_exit(sh_cmt_exit); 1106 1107 MODULE_AUTHOR("Magnus Damm"); 1108 MODULE_DESCRIPTION("SuperH CMT Timer Driver"); 1109 MODULE_LICENSE("GPL v2"); 1110