xref: /openbmc/linux/drivers/clocksource/sh_cmt.c (revision 1fa6ac37)
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/io.h>
26 #include <linux/clk.h>
27 #include <linux/irq.h>
28 #include <linux/err.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 
34 struct sh_cmt_priv {
35 	void __iomem *mapbase;
36 	struct clk *clk;
37 	unsigned long width; /* 16 or 32 bit version of hardware block */
38 	unsigned long overflow_bit;
39 	unsigned long clear_bits;
40 	struct irqaction irqaction;
41 	struct platform_device *pdev;
42 
43 	unsigned long flags;
44 	unsigned long match_value;
45 	unsigned long next_match_value;
46 	unsigned long max_match_value;
47 	unsigned long rate;
48 	spinlock_t lock;
49 	struct clock_event_device ced;
50 	struct clocksource cs;
51 	unsigned long total_cycles;
52 };
53 
54 static DEFINE_SPINLOCK(sh_cmt_lock);
55 
56 #define CMSTR -1 /* shared register */
57 #define CMCSR 0 /* channel register */
58 #define CMCNT 1 /* channel register */
59 #define CMCOR 2 /* channel register */
60 
61 static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
62 {
63 	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
64 	void __iomem *base = p->mapbase;
65 	unsigned long offs;
66 
67 	if (reg_nr == CMSTR) {
68 		offs = 0;
69 		base -= cfg->channel_offset;
70 	} else
71 		offs = reg_nr;
72 
73 	if (p->width == 16)
74 		offs <<= 1;
75 	else {
76 		offs <<= 2;
77 		if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
78 			return ioread32(base + offs);
79 	}
80 
81 	return ioread16(base + offs);
82 }
83 
84 static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
85 				unsigned long value)
86 {
87 	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
88 	void __iomem *base = p->mapbase;
89 	unsigned long offs;
90 
91 	if (reg_nr == CMSTR) {
92 		offs = 0;
93 		base -= cfg->channel_offset;
94 	} else
95 		offs = reg_nr;
96 
97 	if (p->width == 16)
98 		offs <<= 1;
99 	else {
100 		offs <<= 2;
101 		if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
102 			iowrite32(value, base + offs);
103 			return;
104 		}
105 	}
106 
107 	iowrite16(value, base + offs);
108 }
109 
110 static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
111 					int *has_wrapped)
112 {
113 	unsigned long v1, v2, v3;
114 	int o1, o2;
115 
116 	o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
117 
118 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
119 	do {
120 		o2 = o1;
121 		v1 = sh_cmt_read(p, CMCNT);
122 		v2 = sh_cmt_read(p, CMCNT);
123 		v3 = sh_cmt_read(p, CMCNT);
124 		o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
125 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
126 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
127 
128 	*has_wrapped = o1;
129 	return v2;
130 }
131 
132 
133 static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
134 {
135 	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
136 	unsigned long flags, value;
137 
138 	/* start stop register shared by multiple timer channels */
139 	spin_lock_irqsave(&sh_cmt_lock, flags);
140 	value = sh_cmt_read(p, CMSTR);
141 
142 	if (start)
143 		value |= 1 << cfg->timer_bit;
144 	else
145 		value &= ~(1 << cfg->timer_bit);
146 
147 	sh_cmt_write(p, CMSTR, value);
148 	spin_unlock_irqrestore(&sh_cmt_lock, flags);
149 }
150 
151 static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
152 {
153 	int ret;
154 
155 	/* enable clock */
156 	ret = clk_enable(p->clk);
157 	if (ret) {
158 		dev_err(&p->pdev->dev, "cannot enable clock\n");
159 		return ret;
160 	}
161 
162 	/* make sure channel is disabled */
163 	sh_cmt_start_stop_ch(p, 0);
164 
165 	/* configure channel, periodic mode and maximum timeout */
166 	if (p->width == 16) {
167 		*rate = clk_get_rate(p->clk) / 512;
168 		sh_cmt_write(p, CMCSR, 0x43);
169 	} else {
170 		*rate = clk_get_rate(p->clk) / 8;
171 		sh_cmt_write(p, CMCSR, 0x01a4);
172 	}
173 
174 	sh_cmt_write(p, CMCOR, 0xffffffff);
175 	sh_cmt_write(p, CMCNT, 0);
176 
177 	/* enable channel */
178 	sh_cmt_start_stop_ch(p, 1);
179 	return 0;
180 }
181 
182 static void sh_cmt_disable(struct sh_cmt_priv *p)
183 {
184 	/* disable channel */
185 	sh_cmt_start_stop_ch(p, 0);
186 
187 	/* disable interrupts in CMT block */
188 	sh_cmt_write(p, CMCSR, 0);
189 
190 	/* stop clock */
191 	clk_disable(p->clk);
192 }
193 
194 /* private flags */
195 #define FLAG_CLOCKEVENT (1 << 0)
196 #define FLAG_CLOCKSOURCE (1 << 1)
197 #define FLAG_REPROGRAM (1 << 2)
198 #define FLAG_SKIPEVENT (1 << 3)
199 #define FLAG_IRQCONTEXT (1 << 4)
200 
201 static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
202 					      int absolute)
203 {
204 	unsigned long new_match;
205 	unsigned long value = p->next_match_value;
206 	unsigned long delay = 0;
207 	unsigned long now = 0;
208 	int has_wrapped;
209 
210 	now = sh_cmt_get_counter(p, &has_wrapped);
211 	p->flags |= FLAG_REPROGRAM; /* force reprogram */
212 
213 	if (has_wrapped) {
214 		/* we're competing with the interrupt handler.
215 		 *  -> let the interrupt handler reprogram the timer.
216 		 *  -> interrupt number two handles the event.
217 		 */
218 		p->flags |= FLAG_SKIPEVENT;
219 		return;
220 	}
221 
222 	if (absolute)
223 		now = 0;
224 
225 	do {
226 		/* reprogram the timer hardware,
227 		 * but don't save the new match value yet.
228 		 */
229 		new_match = now + value + delay;
230 		if (new_match > p->max_match_value)
231 			new_match = p->max_match_value;
232 
233 		sh_cmt_write(p, CMCOR, new_match);
234 
235 		now = sh_cmt_get_counter(p, &has_wrapped);
236 		if (has_wrapped && (new_match > p->match_value)) {
237 			/* we are changing to a greater match value,
238 			 * so this wrap must be caused by the counter
239 			 * matching the old value.
240 			 * -> first interrupt reprograms the timer.
241 			 * -> interrupt number two handles the event.
242 			 */
243 			p->flags |= FLAG_SKIPEVENT;
244 			break;
245 		}
246 
247 		if (has_wrapped) {
248 			/* we are changing to a smaller match value,
249 			 * so the wrap must be caused by the counter
250 			 * matching the new value.
251 			 * -> save programmed match value.
252 			 * -> let isr handle the event.
253 			 */
254 			p->match_value = new_match;
255 			break;
256 		}
257 
258 		/* be safe: verify hardware settings */
259 		if (now < new_match) {
260 			/* timer value is below match value, all good.
261 			 * this makes sure we won't miss any match events.
262 			 * -> save programmed match value.
263 			 * -> let isr handle the event.
264 			 */
265 			p->match_value = new_match;
266 			break;
267 		}
268 
269 		/* the counter has reached a value greater
270 		 * than our new match value. and since the
271 		 * has_wrapped flag isn't set we must have
272 		 * programmed a too close event.
273 		 * -> increase delay and retry.
274 		 */
275 		if (delay)
276 			delay <<= 1;
277 		else
278 			delay = 1;
279 
280 		if (!delay)
281 			dev_warn(&p->pdev->dev, "too long delay\n");
282 
283 	} while (delay);
284 }
285 
286 static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
287 {
288 	unsigned long flags;
289 
290 	if (delta > p->max_match_value)
291 		dev_warn(&p->pdev->dev, "delta out of range\n");
292 
293 	spin_lock_irqsave(&p->lock, flags);
294 	p->next_match_value = delta;
295 	sh_cmt_clock_event_program_verify(p, 0);
296 	spin_unlock_irqrestore(&p->lock, flags);
297 }
298 
299 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
300 {
301 	struct sh_cmt_priv *p = dev_id;
302 
303 	/* clear flags */
304 	sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);
305 
306 	/* update clock source counter to begin with if enabled
307 	 * the wrap flag should be cleared by the timer specific
308 	 * isr before we end up here.
309 	 */
310 	if (p->flags & FLAG_CLOCKSOURCE)
311 		p->total_cycles += p->match_value;
312 
313 	if (!(p->flags & FLAG_REPROGRAM))
314 		p->next_match_value = p->max_match_value;
315 
316 	p->flags |= FLAG_IRQCONTEXT;
317 
318 	if (p->flags & FLAG_CLOCKEVENT) {
319 		if (!(p->flags & FLAG_SKIPEVENT)) {
320 			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
321 				p->next_match_value = p->max_match_value;
322 				p->flags |= FLAG_REPROGRAM;
323 			}
324 
325 			p->ced.event_handler(&p->ced);
326 		}
327 	}
328 
329 	p->flags &= ~FLAG_SKIPEVENT;
330 
331 	if (p->flags & FLAG_REPROGRAM) {
332 		p->flags &= ~FLAG_REPROGRAM;
333 		sh_cmt_clock_event_program_verify(p, 1);
334 
335 		if (p->flags & FLAG_CLOCKEVENT)
336 			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
337 			    || (p->match_value == p->next_match_value))
338 				p->flags &= ~FLAG_REPROGRAM;
339 	}
340 
341 	p->flags &= ~FLAG_IRQCONTEXT;
342 
343 	return IRQ_HANDLED;
344 }
345 
346 static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
347 {
348 	int ret = 0;
349 	unsigned long flags;
350 
351 	spin_lock_irqsave(&p->lock, flags);
352 
353 	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
354 		ret = sh_cmt_enable(p, &p->rate);
355 
356 	if (ret)
357 		goto out;
358 	p->flags |= flag;
359 
360 	/* setup timeout if no clockevent */
361 	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
362 		sh_cmt_set_next(p, p->max_match_value);
363  out:
364 	spin_unlock_irqrestore(&p->lock, flags);
365 
366 	return ret;
367 }
368 
369 static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
370 {
371 	unsigned long flags;
372 	unsigned long f;
373 
374 	spin_lock_irqsave(&p->lock, flags);
375 
376 	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
377 	p->flags &= ~flag;
378 
379 	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
380 		sh_cmt_disable(p);
381 
382 	/* adjust the timeout to maximum if only clocksource left */
383 	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
384 		sh_cmt_set_next(p, p->max_match_value);
385 
386 	spin_unlock_irqrestore(&p->lock, flags);
387 }
388 
389 static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
390 {
391 	return container_of(cs, struct sh_cmt_priv, cs);
392 }
393 
394 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
395 {
396 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
397 	unsigned long flags, raw;
398 	unsigned long value;
399 	int has_wrapped;
400 
401 	spin_lock_irqsave(&p->lock, flags);
402 	value = p->total_cycles;
403 	raw = sh_cmt_get_counter(p, &has_wrapped);
404 
405 	if (unlikely(has_wrapped))
406 		raw += p->match_value;
407 	spin_unlock_irqrestore(&p->lock, flags);
408 
409 	return value + raw;
410 }
411 
412 static int sh_cmt_clocksource_enable(struct clocksource *cs)
413 {
414 	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
415 
416 	p->total_cycles = 0;
417 
418 	return sh_cmt_start(p, FLAG_CLOCKSOURCE);
419 }
420 
421 static void sh_cmt_clocksource_disable(struct clocksource *cs)
422 {
423 	sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
424 }
425 
426 static void sh_cmt_clocksource_resume(struct clocksource *cs)
427 {
428 	sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
429 }
430 
431 static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
432 				       char *name, unsigned long rating)
433 {
434 	struct clocksource *cs = &p->cs;
435 
436 	cs->name = name;
437 	cs->rating = rating;
438 	cs->read = sh_cmt_clocksource_read;
439 	cs->enable = sh_cmt_clocksource_enable;
440 	cs->disable = sh_cmt_clocksource_disable;
441 	cs->suspend = sh_cmt_clocksource_disable;
442 	cs->resume = sh_cmt_clocksource_resume;
443 	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
444 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
445 
446 	/* clk_get_rate() needs an enabled clock */
447 	clk_enable(p->clk);
448 	p->rate = clk_get_rate(p->clk) / (p->width == 16) ? 512 : 8;
449 	clk_disable(p->clk);
450 
451 	/* TODO: calculate good shift from rate and counter bit width */
452 	cs->shift = 10;
453 	cs->mult = clocksource_hz2mult(p->rate, cs->shift);
454 
455 	dev_info(&p->pdev->dev, "used as clock source\n");
456 
457 	clocksource_register(cs);
458 
459 	return 0;
460 }
461 
462 static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
463 {
464 	return container_of(ced, struct sh_cmt_priv, ced);
465 }
466 
467 static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
468 {
469 	struct clock_event_device *ced = &p->ced;
470 
471 	sh_cmt_start(p, FLAG_CLOCKEVENT);
472 
473 	/* TODO: calculate good shift from rate and counter bit width */
474 
475 	ced->shift = 32;
476 	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
477 	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
478 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
479 
480 	if (periodic)
481 		sh_cmt_set_next(p, (p->rate + HZ/2) / HZ);
482 	else
483 		sh_cmt_set_next(p, p->max_match_value);
484 }
485 
486 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
487 				    struct clock_event_device *ced)
488 {
489 	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
490 
491 	/* deal with old setting first */
492 	switch (ced->mode) {
493 	case CLOCK_EVT_MODE_PERIODIC:
494 	case CLOCK_EVT_MODE_ONESHOT:
495 		sh_cmt_stop(p, FLAG_CLOCKEVENT);
496 		break;
497 	default:
498 		break;
499 	}
500 
501 	switch (mode) {
502 	case CLOCK_EVT_MODE_PERIODIC:
503 		dev_info(&p->pdev->dev, "used for periodic clock events\n");
504 		sh_cmt_clock_event_start(p, 1);
505 		break;
506 	case CLOCK_EVT_MODE_ONESHOT:
507 		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
508 		sh_cmt_clock_event_start(p, 0);
509 		break;
510 	case CLOCK_EVT_MODE_SHUTDOWN:
511 	case CLOCK_EVT_MODE_UNUSED:
512 		sh_cmt_stop(p, FLAG_CLOCKEVENT);
513 		break;
514 	default:
515 		break;
516 	}
517 }
518 
519 static int sh_cmt_clock_event_next(unsigned long delta,
520 				   struct clock_event_device *ced)
521 {
522 	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
523 
524 	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
525 	if (likely(p->flags & FLAG_IRQCONTEXT))
526 		p->next_match_value = delta;
527 	else
528 		sh_cmt_set_next(p, delta);
529 
530 	return 0;
531 }
532 
533 static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
534 				       char *name, unsigned long rating)
535 {
536 	struct clock_event_device *ced = &p->ced;
537 
538 	memset(ced, 0, sizeof(*ced));
539 
540 	ced->name = name;
541 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
542 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
543 	ced->rating = rating;
544 	ced->cpumask = cpumask_of(0);
545 	ced->set_next_event = sh_cmt_clock_event_next;
546 	ced->set_mode = sh_cmt_clock_event_mode;
547 
548 	dev_info(&p->pdev->dev, "used for clock events\n");
549 	clockevents_register_device(ced);
550 }
551 
552 static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
553 			   unsigned long clockevent_rating,
554 			   unsigned long clocksource_rating)
555 {
556 	if (p->width == (sizeof(p->max_match_value) * 8))
557 		p->max_match_value = ~0;
558 	else
559 		p->max_match_value = (1 << p->width) - 1;
560 
561 	p->match_value = p->max_match_value;
562 	spin_lock_init(&p->lock);
563 
564 	if (clockevent_rating)
565 		sh_cmt_register_clockevent(p, name, clockevent_rating);
566 
567 	if (clocksource_rating)
568 		sh_cmt_register_clocksource(p, name, clocksource_rating);
569 
570 	return 0;
571 }
572 
573 static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
574 {
575 	struct sh_timer_config *cfg = pdev->dev.platform_data;
576 	struct resource *res;
577 	int irq, ret;
578 	ret = -ENXIO;
579 
580 	memset(p, 0, sizeof(*p));
581 	p->pdev = pdev;
582 
583 	if (!cfg) {
584 		dev_err(&p->pdev->dev, "missing platform data\n");
585 		goto err0;
586 	}
587 
588 	platform_set_drvdata(pdev, p);
589 
590 	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
591 	if (!res) {
592 		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
593 		goto err0;
594 	}
595 
596 	irq = platform_get_irq(p->pdev, 0);
597 	if (irq < 0) {
598 		dev_err(&p->pdev->dev, "failed to get irq\n");
599 		goto err0;
600 	}
601 
602 	/* map memory, let mapbase point to our channel */
603 	p->mapbase = ioremap_nocache(res->start, resource_size(res));
604 	if (p->mapbase == NULL) {
605 		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
606 		goto err0;
607 	}
608 
609 	/* request irq using setup_irq() (too early for request_irq()) */
610 	p->irqaction.name = dev_name(&p->pdev->dev);
611 	p->irqaction.handler = sh_cmt_interrupt;
612 	p->irqaction.dev_id = p;
613 	p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
614 			     IRQF_IRQPOLL  | IRQF_NOBALANCING;
615 
616 	/* get hold of clock */
617 	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
618 	if (IS_ERR(p->clk)) {
619 		dev_warn(&p->pdev->dev, "using deprecated clock lookup\n");
620 		p->clk = clk_get(&p->pdev->dev, cfg->clk);
621 		if (IS_ERR(p->clk)) {
622 			dev_err(&p->pdev->dev, "cannot get clock\n");
623 			ret = PTR_ERR(p->clk);
624 			goto err1;
625 		}
626 	}
627 
628 	if (resource_size(res) == 6) {
629 		p->width = 16;
630 		p->overflow_bit = 0x80;
631 		p->clear_bits = ~0x80;
632 	} else {
633 		p->width = 32;
634 		p->overflow_bit = 0x8000;
635 		p->clear_bits = ~0xc000;
636 	}
637 
638 	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
639 			      cfg->clockevent_rating,
640 			      cfg->clocksource_rating);
641 	if (ret) {
642 		dev_err(&p->pdev->dev, "registration failed\n");
643 		goto err1;
644 	}
645 
646 	ret = setup_irq(irq, &p->irqaction);
647 	if (ret) {
648 		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
649 		goto err1;
650 	}
651 
652 	return 0;
653 
654 err1:
655 	iounmap(p->mapbase);
656 err0:
657 	return ret;
658 }
659 
660 static int __devinit sh_cmt_probe(struct platform_device *pdev)
661 {
662 	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
663 	int ret;
664 
665 	if (p) {
666 		dev_info(&pdev->dev, "kept as earlytimer\n");
667 		return 0;
668 	}
669 
670 	p = kmalloc(sizeof(*p), GFP_KERNEL);
671 	if (p == NULL) {
672 		dev_err(&pdev->dev, "failed to allocate driver data\n");
673 		return -ENOMEM;
674 	}
675 
676 	ret = sh_cmt_setup(p, pdev);
677 	if (ret) {
678 		kfree(p);
679 		platform_set_drvdata(pdev, NULL);
680 	}
681 	return ret;
682 }
683 
684 static int __devexit sh_cmt_remove(struct platform_device *pdev)
685 {
686 	return -EBUSY; /* cannot unregister clockevent and clocksource */
687 }
688 
689 static struct platform_driver sh_cmt_device_driver = {
690 	.probe		= sh_cmt_probe,
691 	.remove		= __devexit_p(sh_cmt_remove),
692 	.driver		= {
693 		.name	= "sh_cmt",
694 	}
695 };
696 
697 static int __init sh_cmt_init(void)
698 {
699 	return platform_driver_register(&sh_cmt_device_driver);
700 }
701 
702 static void __exit sh_cmt_exit(void)
703 {
704 	platform_driver_unregister(&sh_cmt_device_driver);
705 }
706 
707 early_platform_init("earlytimer", &sh_cmt_device_driver);
708 module_init(sh_cmt_init);
709 module_exit(sh_cmt_exit);
710 
711 MODULE_AUTHOR("Magnus Damm");
712 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
713 MODULE_LICENSE("GPL v2");
714