1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com/ 5 * 6 * samsung - Common hr-timer support (s3c and s5p) 7 */ 8 9 #include <linux/interrupt.h> 10 #include <linux/irq.h> 11 #include <linux/err.h> 12 #include <linux/clk.h> 13 #include <linux/clockchips.h> 14 #include <linux/list.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/of_irq.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/sched_clock.h> 22 23 #include <clocksource/samsung_pwm.h> 24 25 26 /* 27 * Clocksource driver 28 */ 29 30 #define REG_TCFG0 0x00 31 #define REG_TCFG1 0x04 32 #define REG_TCON 0x08 33 #define REG_TINT_CSTAT 0x44 34 35 #define REG_TCNTB(chan) (0x0c + 12 * (chan)) 36 #define REG_TCMPB(chan) (0x10 + 12 * (chan)) 37 38 #define TCFG0_PRESCALER_MASK 0xff 39 #define TCFG0_PRESCALER1_SHIFT 8 40 41 #define TCFG1_SHIFT(x) ((x) * 4) 42 #define TCFG1_MUX_MASK 0xf 43 44 /* 45 * Each channel occupies 4 bits in TCON register, but there is a gap of 4 46 * bits (one channel) after channel 0, so channels have different numbering 47 * when accessing TCON register. 48 * 49 * In addition, the location of autoreload bit for channel 4 (TCON channel 5) 50 * in its set of bits is 2 as opposed to 3 for other channels. 51 */ 52 #define TCON_START(chan) (1 << (4 * (chan) + 0)) 53 #define TCON_MANUALUPDATE(chan) (1 << (4 * (chan) + 1)) 54 #define TCON_INVERT(chan) (1 << (4 * (chan) + 2)) 55 #define _TCON_AUTORELOAD(chan) (1 << (4 * (chan) + 3)) 56 #define _TCON_AUTORELOAD4(chan) (1 << (4 * (chan) + 2)) 57 #define TCON_AUTORELOAD(chan) \ 58 ((chan < 5) ? _TCON_AUTORELOAD(chan) : _TCON_AUTORELOAD4(chan)) 59 60 DEFINE_SPINLOCK(samsung_pwm_lock); 61 EXPORT_SYMBOL(samsung_pwm_lock); 62 63 struct samsung_pwm_clocksource { 64 void __iomem *base; 65 void __iomem *source_reg; 66 unsigned int irq[SAMSUNG_PWM_NUM]; 67 struct samsung_pwm_variant variant; 68 69 struct clk *timerclk; 70 71 unsigned int event_id; 72 unsigned int source_id; 73 unsigned int tcnt_max; 74 unsigned int tscaler_div; 75 unsigned int tdiv; 76 77 unsigned long clock_count_per_tick; 78 }; 79 80 static struct samsung_pwm_clocksource pwm; 81 82 static void samsung_timer_set_prescale(unsigned int channel, u16 prescale) 83 { 84 unsigned long flags; 85 u8 shift = 0; 86 u32 reg; 87 88 if (channel >= 2) 89 shift = TCFG0_PRESCALER1_SHIFT; 90 91 spin_lock_irqsave(&samsung_pwm_lock, flags); 92 93 reg = readl(pwm.base + REG_TCFG0); 94 reg &= ~(TCFG0_PRESCALER_MASK << shift); 95 reg |= (prescale - 1) << shift; 96 writel(reg, pwm.base + REG_TCFG0); 97 98 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 99 } 100 101 static void samsung_timer_set_divisor(unsigned int channel, u8 divisor) 102 { 103 u8 shift = TCFG1_SHIFT(channel); 104 unsigned long flags; 105 u32 reg; 106 u8 bits; 107 108 bits = (fls(divisor) - 1) - pwm.variant.div_base; 109 110 spin_lock_irqsave(&samsung_pwm_lock, flags); 111 112 reg = readl(pwm.base + REG_TCFG1); 113 reg &= ~(TCFG1_MUX_MASK << shift); 114 reg |= bits << shift; 115 writel(reg, pwm.base + REG_TCFG1); 116 117 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 118 } 119 120 static void samsung_time_stop(unsigned int channel) 121 { 122 unsigned long tcon; 123 unsigned long flags; 124 125 if (channel > 0) 126 ++channel; 127 128 spin_lock_irqsave(&samsung_pwm_lock, flags); 129 130 tcon = readl_relaxed(pwm.base + REG_TCON); 131 tcon &= ~TCON_START(channel); 132 writel_relaxed(tcon, pwm.base + REG_TCON); 133 134 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 135 } 136 137 static void samsung_time_setup(unsigned int channel, unsigned long tcnt) 138 { 139 unsigned long tcon; 140 unsigned long flags; 141 unsigned int tcon_chan = channel; 142 143 if (tcon_chan > 0) 144 ++tcon_chan; 145 146 spin_lock_irqsave(&samsung_pwm_lock, flags); 147 148 tcon = readl_relaxed(pwm.base + REG_TCON); 149 150 tcon &= ~(TCON_START(tcon_chan) | TCON_AUTORELOAD(tcon_chan)); 151 tcon |= TCON_MANUALUPDATE(tcon_chan); 152 153 writel_relaxed(tcnt, pwm.base + REG_TCNTB(channel)); 154 writel_relaxed(tcnt, pwm.base + REG_TCMPB(channel)); 155 writel_relaxed(tcon, pwm.base + REG_TCON); 156 157 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 158 } 159 160 static void samsung_time_start(unsigned int channel, bool periodic) 161 { 162 unsigned long tcon; 163 unsigned long flags; 164 165 if (channel > 0) 166 ++channel; 167 168 spin_lock_irqsave(&samsung_pwm_lock, flags); 169 170 tcon = readl_relaxed(pwm.base + REG_TCON); 171 172 tcon &= ~TCON_MANUALUPDATE(channel); 173 tcon |= TCON_START(channel); 174 175 if (periodic) 176 tcon |= TCON_AUTORELOAD(channel); 177 else 178 tcon &= ~TCON_AUTORELOAD(channel); 179 180 writel_relaxed(tcon, pwm.base + REG_TCON); 181 182 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 183 } 184 185 static int samsung_set_next_event(unsigned long cycles, 186 struct clock_event_device *evt) 187 { 188 /* 189 * This check is needed to account for internal rounding 190 * errors inside clockevents core, which might result in 191 * passing cycles = 0, which in turn would not generate any 192 * timer interrupt and hang the system. 193 * 194 * Another solution would be to set up the clockevent device 195 * with min_delta = 2, but this would unnecessarily increase 196 * the minimum sleep period. 197 */ 198 if (!cycles) 199 cycles = 1; 200 201 samsung_time_setup(pwm.event_id, cycles); 202 samsung_time_start(pwm.event_id, false); 203 204 return 0; 205 } 206 207 static int samsung_shutdown(struct clock_event_device *evt) 208 { 209 samsung_time_stop(pwm.event_id); 210 return 0; 211 } 212 213 static int samsung_set_periodic(struct clock_event_device *evt) 214 { 215 samsung_time_stop(pwm.event_id); 216 samsung_time_setup(pwm.event_id, pwm.clock_count_per_tick - 1); 217 samsung_time_start(pwm.event_id, true); 218 return 0; 219 } 220 221 static void samsung_clockevent_resume(struct clock_event_device *cev) 222 { 223 samsung_timer_set_prescale(pwm.event_id, pwm.tscaler_div); 224 samsung_timer_set_divisor(pwm.event_id, pwm.tdiv); 225 226 if (pwm.variant.has_tint_cstat) { 227 u32 mask = (1 << pwm.event_id); 228 writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); 229 } 230 } 231 232 static struct clock_event_device time_event_device = { 233 .name = "samsung_event_timer", 234 .features = CLOCK_EVT_FEAT_PERIODIC | 235 CLOCK_EVT_FEAT_ONESHOT, 236 .rating = 200, 237 .set_next_event = samsung_set_next_event, 238 .set_state_shutdown = samsung_shutdown, 239 .set_state_periodic = samsung_set_periodic, 240 .set_state_oneshot = samsung_shutdown, 241 .tick_resume = samsung_shutdown, 242 .resume = samsung_clockevent_resume, 243 }; 244 245 static irqreturn_t samsung_clock_event_isr(int irq, void *dev_id) 246 { 247 struct clock_event_device *evt = dev_id; 248 249 if (pwm.variant.has_tint_cstat) { 250 u32 mask = (1 << pwm.event_id); 251 writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); 252 } 253 254 evt->event_handler(evt); 255 256 return IRQ_HANDLED; 257 } 258 259 static void __init samsung_clockevent_init(void) 260 { 261 unsigned long pclk; 262 unsigned long clock_rate; 263 unsigned int irq_number; 264 265 pclk = clk_get_rate(pwm.timerclk); 266 267 samsung_timer_set_prescale(pwm.event_id, pwm.tscaler_div); 268 samsung_timer_set_divisor(pwm.event_id, pwm.tdiv); 269 270 clock_rate = pclk / (pwm.tscaler_div * pwm.tdiv); 271 pwm.clock_count_per_tick = clock_rate / HZ; 272 273 time_event_device.cpumask = cpumask_of(0); 274 clockevents_config_and_register(&time_event_device, 275 clock_rate, 1, pwm.tcnt_max); 276 277 irq_number = pwm.irq[pwm.event_id]; 278 if (request_irq(irq_number, samsung_clock_event_isr, 279 IRQF_TIMER | IRQF_IRQPOLL, "samsung_time_irq", 280 &time_event_device)) 281 pr_err("%s: request_irq() failed\n", "samsung_time_irq"); 282 283 if (pwm.variant.has_tint_cstat) { 284 u32 mask = (1 << pwm.event_id); 285 writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); 286 } 287 } 288 289 static void samsung_clocksource_suspend(struct clocksource *cs) 290 { 291 samsung_time_stop(pwm.source_id); 292 } 293 294 static void samsung_clocksource_resume(struct clocksource *cs) 295 { 296 samsung_timer_set_prescale(pwm.source_id, pwm.tscaler_div); 297 samsung_timer_set_divisor(pwm.source_id, pwm.tdiv); 298 299 samsung_time_setup(pwm.source_id, pwm.tcnt_max); 300 samsung_time_start(pwm.source_id, true); 301 } 302 303 static u64 notrace samsung_clocksource_read(struct clocksource *c) 304 { 305 return ~readl_relaxed(pwm.source_reg); 306 } 307 308 static struct clocksource samsung_clocksource = { 309 .name = "samsung_clocksource_timer", 310 .rating = 250, 311 .read = samsung_clocksource_read, 312 .suspend = samsung_clocksource_suspend, 313 .resume = samsung_clocksource_resume, 314 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 315 }; 316 317 /* 318 * Override the global weak sched_clock symbol with this 319 * local implementation which uses the clocksource to get some 320 * better resolution when scheduling the kernel. We accept that 321 * this wraps around for now, since it is just a relative time 322 * stamp. (Inspired by U300 implementation.) 323 */ 324 static u64 notrace samsung_read_sched_clock(void) 325 { 326 return samsung_clocksource_read(NULL); 327 } 328 329 static int __init samsung_clocksource_init(void) 330 { 331 unsigned long pclk; 332 unsigned long clock_rate; 333 334 pclk = clk_get_rate(pwm.timerclk); 335 336 samsung_timer_set_prescale(pwm.source_id, pwm.tscaler_div); 337 samsung_timer_set_divisor(pwm.source_id, pwm.tdiv); 338 339 clock_rate = pclk / (pwm.tscaler_div * pwm.tdiv); 340 341 samsung_time_setup(pwm.source_id, pwm.tcnt_max); 342 samsung_time_start(pwm.source_id, true); 343 344 if (pwm.source_id == 4) 345 pwm.source_reg = pwm.base + 0x40; 346 else 347 pwm.source_reg = pwm.base + pwm.source_id * 0x0c + 0x14; 348 349 sched_clock_register(samsung_read_sched_clock, 350 pwm.variant.bits, clock_rate); 351 352 samsung_clocksource.mask = CLOCKSOURCE_MASK(pwm.variant.bits); 353 return clocksource_register_hz(&samsung_clocksource, clock_rate); 354 } 355 356 static void __init samsung_timer_resources(void) 357 { 358 clk_prepare_enable(pwm.timerclk); 359 360 pwm.tcnt_max = (1UL << pwm.variant.bits) - 1; 361 if (pwm.variant.bits == 16) { 362 pwm.tscaler_div = 25; 363 pwm.tdiv = 2; 364 } else { 365 pwm.tscaler_div = 2; 366 pwm.tdiv = 1; 367 } 368 } 369 370 /* 371 * PWM master driver 372 */ 373 static int __init _samsung_pwm_clocksource_init(void) 374 { 375 u8 mask; 376 int channel; 377 378 mask = ~pwm.variant.output_mask & ((1 << SAMSUNG_PWM_NUM) - 1); 379 channel = fls(mask) - 1; 380 if (channel < 0) { 381 pr_crit("failed to find PWM channel for clocksource\n"); 382 return -EINVAL; 383 } 384 pwm.source_id = channel; 385 386 mask &= ~(1 << channel); 387 channel = fls(mask) - 1; 388 if (channel < 0) { 389 pr_crit("failed to find PWM channel for clock event\n"); 390 return -EINVAL; 391 } 392 pwm.event_id = channel; 393 394 samsung_timer_resources(); 395 samsung_clockevent_init(); 396 397 return samsung_clocksource_init(); 398 } 399 400 void __init samsung_pwm_clocksource_init(void __iomem *base, 401 unsigned int *irqs, struct samsung_pwm_variant *variant) 402 { 403 pwm.base = base; 404 memcpy(&pwm.variant, variant, sizeof(pwm.variant)); 405 memcpy(pwm.irq, irqs, SAMSUNG_PWM_NUM * sizeof(*irqs)); 406 407 pwm.timerclk = clk_get(NULL, "timers"); 408 if (IS_ERR(pwm.timerclk)) 409 panic("failed to get timers clock for timer"); 410 411 _samsung_pwm_clocksource_init(); 412 } 413 414 #ifdef CONFIG_TIMER_OF 415 static int __init samsung_pwm_alloc(struct device_node *np, 416 const struct samsung_pwm_variant *variant) 417 { 418 struct property *prop; 419 const __be32 *cur; 420 u32 val; 421 int i; 422 423 memcpy(&pwm.variant, variant, sizeof(pwm.variant)); 424 for (i = 0; i < SAMSUNG_PWM_NUM; ++i) 425 pwm.irq[i] = irq_of_parse_and_map(np, i); 426 427 of_property_for_each_u32(np, "samsung,pwm-outputs", prop, cur, val) { 428 if (val >= SAMSUNG_PWM_NUM) { 429 pr_warn("%s: invalid channel index in samsung,pwm-outputs property\n", __func__); 430 continue; 431 } 432 pwm.variant.output_mask |= 1 << val; 433 } 434 435 pwm.base = of_iomap(np, 0); 436 if (!pwm.base) { 437 pr_err("%s: failed to map PWM registers\n", __func__); 438 return -ENXIO; 439 } 440 441 pwm.timerclk = of_clk_get_by_name(np, "timers"); 442 if (IS_ERR(pwm.timerclk)) { 443 pr_crit("failed to get timers clock for timer\n"); 444 return PTR_ERR(pwm.timerclk); 445 } 446 447 return _samsung_pwm_clocksource_init(); 448 } 449 450 static const struct samsung_pwm_variant s3c24xx_variant = { 451 .bits = 16, 452 .div_base = 1, 453 .has_tint_cstat = false, 454 .tclk_mask = (1 << 4), 455 }; 456 457 static int __init s3c2410_pwm_clocksource_init(struct device_node *np) 458 { 459 return samsung_pwm_alloc(np, &s3c24xx_variant); 460 } 461 TIMER_OF_DECLARE(s3c2410_pwm, "samsung,s3c2410-pwm", s3c2410_pwm_clocksource_init); 462 463 static const struct samsung_pwm_variant s3c64xx_variant = { 464 .bits = 32, 465 .div_base = 0, 466 .has_tint_cstat = true, 467 .tclk_mask = (1 << 7) | (1 << 6) | (1 << 5), 468 }; 469 470 static int __init s3c64xx_pwm_clocksource_init(struct device_node *np) 471 { 472 return samsung_pwm_alloc(np, &s3c64xx_variant); 473 } 474 TIMER_OF_DECLARE(s3c6400_pwm, "samsung,s3c6400-pwm", s3c64xx_pwm_clocksource_init); 475 476 static const struct samsung_pwm_variant s5p64x0_variant = { 477 .bits = 32, 478 .div_base = 0, 479 .has_tint_cstat = true, 480 .tclk_mask = 0, 481 }; 482 483 static int __init s5p64x0_pwm_clocksource_init(struct device_node *np) 484 { 485 return samsung_pwm_alloc(np, &s5p64x0_variant); 486 } 487 TIMER_OF_DECLARE(s5p6440_pwm, "samsung,s5p6440-pwm", s5p64x0_pwm_clocksource_init); 488 489 static const struct samsung_pwm_variant s5p_variant = { 490 .bits = 32, 491 .div_base = 0, 492 .has_tint_cstat = true, 493 .tclk_mask = (1 << 5), 494 }; 495 496 static int __init s5p_pwm_clocksource_init(struct device_node *np) 497 { 498 return samsung_pwm_alloc(np, &s5p_variant); 499 } 500 TIMER_OF_DECLARE(s5pc100_pwm, "samsung,s5pc100-pwm", s5p_pwm_clocksource_init); 501 #endif 502