1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Renesas Timer Support - OSTM
4  *
5  * Copyright (C) 2017 Renesas Electronics America, Inc.
6  * Copyright (C) 2017 Chris Brandt
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clockchips.h>
11 #include <linux/interrupt.h>
12 #include <linux/sched_clock.h>
13 #include <linux/slab.h>
14 
15 #include "timer-of.h"
16 
17 /*
18  * The OSTM contains independent channels.
19  * The first OSTM channel probed will be set up as a free running
20  * clocksource. Additionally we will use this clocksource for the system
21  * schedule timer sched_clock().
22  *
23  * The second (or more) channel probed will be set up as an interrupt
24  * driven clock event.
25  */
26 
27 static void __iomem *system_clock;	/* For sched_clock() */
28 
29 /* OSTM REGISTERS */
30 #define	OSTM_CMP		0x000	/* RW,32 */
31 #define	OSTM_CNT		0x004	/* R,32 */
32 #define	OSTM_TE			0x010	/* R,8 */
33 #define	OSTM_TS			0x014	/* W,8 */
34 #define	OSTM_TT			0x018	/* W,8 */
35 #define	OSTM_CTL		0x020	/* RW,8 */
36 
37 #define	TE			0x01
38 #define	TS			0x01
39 #define	TT			0x01
40 #define	CTL_PERIODIC		0x00
41 #define	CTL_ONESHOT		0x02
42 #define	CTL_FREERUN		0x02
43 
44 static void ostm_timer_stop(struct timer_of *to)
45 {
46 	if (readb(timer_of_base(to) + OSTM_TE) & TE) {
47 		writeb(TT, timer_of_base(to) + OSTM_TT);
48 
49 		/*
50 		 * Read back the register simply to confirm the write operation
51 		 * has completed since I/O writes can sometimes get queued by
52 		 * the bus architecture.
53 		 */
54 		while (readb(timer_of_base(to) + OSTM_TE) & TE)
55 			;
56 	}
57 }
58 
59 static int __init ostm_init_clksrc(struct timer_of *to)
60 {
61 	ostm_timer_stop(to);
62 
63 	writel(0, timer_of_base(to) + OSTM_CMP);
64 	writeb(CTL_FREERUN, timer_of_base(to) + OSTM_CTL);
65 	writeb(TS, timer_of_base(to) + OSTM_TS);
66 
67 	return clocksource_mmio_init(timer_of_base(to) + OSTM_CNT,
68 				     to->np->full_name, timer_of_rate(to), 300,
69 				     32, clocksource_mmio_readl_up);
70 }
71 
72 static u64 notrace ostm_read_sched_clock(void)
73 {
74 	return readl(system_clock);
75 }
76 
77 static void __init ostm_init_sched_clock(struct timer_of *to)
78 {
79 	system_clock = timer_of_base(to) + OSTM_CNT;
80 	sched_clock_register(ostm_read_sched_clock, 32, timer_of_rate(to));
81 }
82 
83 static int ostm_clock_event_next(unsigned long delta,
84 				 struct clock_event_device *ced)
85 {
86 	struct timer_of *to = to_timer_of(ced);
87 
88 	ostm_timer_stop(to);
89 
90 	writel(delta, timer_of_base(to) + OSTM_CMP);
91 	writeb(CTL_ONESHOT, timer_of_base(to) + OSTM_CTL);
92 	writeb(TS, timer_of_base(to) + OSTM_TS);
93 
94 	return 0;
95 }
96 
97 static int ostm_shutdown(struct clock_event_device *ced)
98 {
99 	struct timer_of *to = to_timer_of(ced);
100 
101 	ostm_timer_stop(to);
102 
103 	return 0;
104 }
105 static int ostm_set_periodic(struct clock_event_device *ced)
106 {
107 	struct timer_of *to = to_timer_of(ced);
108 
109 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
110 		ostm_timer_stop(to);
111 
112 	writel(timer_of_period(to) - 1, timer_of_base(to) + OSTM_CMP);
113 	writeb(CTL_PERIODIC, timer_of_base(to) + OSTM_CTL);
114 	writeb(TS, timer_of_base(to) + OSTM_TS);
115 
116 	return 0;
117 }
118 
119 static int ostm_set_oneshot(struct clock_event_device *ced)
120 {
121 	struct timer_of *to = to_timer_of(ced);
122 
123 	ostm_timer_stop(to);
124 
125 	return 0;
126 }
127 
128 static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id)
129 {
130 	struct clock_event_device *ced = dev_id;
131 
132 	if (clockevent_state_oneshot(ced))
133 		ostm_timer_stop(to_timer_of(ced));
134 
135 	/* notify clockevent layer */
136 	if (ced->event_handler)
137 		ced->event_handler(ced);
138 
139 	return IRQ_HANDLED;
140 }
141 
142 static int __init ostm_init_clkevt(struct timer_of *to)
143 {
144 	struct clock_event_device *ced = &to->clkevt;
145 
146 	ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
147 	ced->set_state_shutdown = ostm_shutdown;
148 	ced->set_state_periodic = ostm_set_periodic;
149 	ced->set_state_oneshot = ostm_set_oneshot;
150 	ced->set_next_event = ostm_clock_event_next;
151 	ced->shift = 32;
152 	ced->rating = 300;
153 	ced->cpumask = cpumask_of(0);
154 	clockevents_config_and_register(ced, timer_of_rate(to), 0xf,
155 					0xffffffff);
156 
157 	return 0;
158 }
159 
160 static int __init ostm_init(struct device_node *np)
161 {
162 	struct timer_of *to;
163 	int ret;
164 
165 	to = kzalloc(sizeof(*to), GFP_KERNEL);
166 	if (!to)
167 		return -ENOMEM;
168 
169 	to->flags = TIMER_OF_BASE | TIMER_OF_CLOCK;
170 	if (system_clock) {
171 		/*
172 		 * clock sources don't use interrupts, clock events do
173 		 */
174 		to->flags |= TIMER_OF_IRQ;
175 		to->of_irq.flags = IRQF_TIMER | IRQF_IRQPOLL;
176 		to->of_irq.handler = ostm_timer_interrupt;
177 	}
178 
179 	ret = timer_of_init(np, to);
180 	if (ret)
181 		goto err_free;
182 
183 	/*
184 	 * First probed device will be used as system clocksource. Any
185 	 * additional devices will be used as clock events.
186 	 */
187 	if (!system_clock) {
188 		ret = ostm_init_clksrc(to);
189 		if (ret)
190 			goto err_cleanup;
191 
192 		ostm_init_sched_clock(to);
193 		pr_info("%pOF: used for clocksource\n", np);
194 	} else {
195 		ret = ostm_init_clkevt(to);
196 		if (ret)
197 			goto err_cleanup;
198 
199 		pr_info("%pOF: used for clock events\n", np);
200 	}
201 
202 	return 0;
203 
204 err_cleanup:
205 	timer_of_cleanup(to);
206 err_free:
207 	kfree(to);
208 	return ret;
209 }
210 
211 TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);
212