xref: /openbmc/linux/drivers/clocksource/renesas-ostm.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Renesas Timer Support - OSTM
3  *
4  * Copyright (C) 2017 Renesas Electronics America, Inc.
5  * Copyright (C) 2017 Chris Brandt
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  */
17 
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/clk.h>
21 #include <linux/clockchips.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched_clock.h>
24 #include <linux/slab.h>
25 
26 /*
27  * The OSTM contains independent channels.
28  * The first OSTM channel probed will be set up as a free running
29  * clocksource. Additionally we will use this clocksource for the system
30  * schedule timer sched_clock().
31  *
32  * The second (or more) channel probed will be set up as an interrupt
33  * driven clock event.
34  */
35 
36 struct ostm_device {
37 	void __iomem *base;
38 	unsigned long ticks_per_jiffy;
39 	struct clock_event_device ced;
40 };
41 
42 static void __iomem *system_clock;	/* For sched_clock() */
43 
44 /* OSTM REGISTERS */
45 #define	OSTM_CMP		0x000	/* RW,32 */
46 #define	OSTM_CNT		0x004	/* R,32 */
47 #define	OSTM_TE			0x010	/* R,8 */
48 #define	OSTM_TS			0x014	/* W,8 */
49 #define	OSTM_TT			0x018	/* W,8 */
50 #define	OSTM_CTL		0x020	/* RW,8 */
51 
52 #define	TE			0x01
53 #define	TS			0x01
54 #define	TT			0x01
55 #define	CTL_PERIODIC		0x00
56 #define	CTL_ONESHOT		0x02
57 #define	CTL_FREERUN		0x02
58 
59 static struct ostm_device *ced_to_ostm(struct clock_event_device *ced)
60 {
61 	return container_of(ced, struct ostm_device, ced);
62 }
63 
64 static void ostm_timer_stop(struct ostm_device *ostm)
65 {
66 	if (readb(ostm->base + OSTM_TE) & TE) {
67 		writeb(TT, ostm->base + OSTM_TT);
68 
69 		/*
70 		 * Read back the register simply to confirm the write operation
71 		 * has completed since I/O writes can sometimes get queued by
72 		 * the bus architecture.
73 		 */
74 		while (readb(ostm->base + OSTM_TE) & TE)
75 			;
76 	}
77 }
78 
79 static int __init ostm_init_clksrc(struct ostm_device *ostm, unsigned long rate)
80 {
81 	/*
82 	 * irq not used (clock sources don't use interrupts)
83 	 */
84 
85 	ostm_timer_stop(ostm);
86 
87 	writel(0, ostm->base + OSTM_CMP);
88 	writeb(CTL_FREERUN, ostm->base + OSTM_CTL);
89 	writeb(TS, ostm->base + OSTM_TS);
90 
91 	return clocksource_mmio_init(ostm->base + OSTM_CNT,
92 			"ostm", rate,
93 			300, 32, clocksource_mmio_readl_up);
94 }
95 
96 static u64 notrace ostm_read_sched_clock(void)
97 {
98 	return readl(system_clock);
99 }
100 
101 static void __init ostm_init_sched_clock(struct ostm_device *ostm,
102 			unsigned long rate)
103 {
104 	system_clock = ostm->base + OSTM_CNT;
105 	sched_clock_register(ostm_read_sched_clock, 32, rate);
106 }
107 
108 static int ostm_clock_event_next(unsigned long delta,
109 				     struct clock_event_device *ced)
110 {
111 	struct ostm_device *ostm = ced_to_ostm(ced);
112 
113 	ostm_timer_stop(ostm);
114 
115 	writel(delta, ostm->base + OSTM_CMP);
116 	writeb(CTL_ONESHOT, ostm->base + OSTM_CTL);
117 	writeb(TS, ostm->base + OSTM_TS);
118 
119 	return 0;
120 }
121 
122 static int ostm_shutdown(struct clock_event_device *ced)
123 {
124 	struct ostm_device *ostm = ced_to_ostm(ced);
125 
126 	ostm_timer_stop(ostm);
127 
128 	return 0;
129 }
130 static int ostm_set_periodic(struct clock_event_device *ced)
131 {
132 	struct ostm_device *ostm = ced_to_ostm(ced);
133 
134 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
135 		ostm_timer_stop(ostm);
136 
137 	writel(ostm->ticks_per_jiffy - 1, ostm->base + OSTM_CMP);
138 	writeb(CTL_PERIODIC, ostm->base + OSTM_CTL);
139 	writeb(TS, ostm->base + OSTM_TS);
140 
141 	return 0;
142 }
143 
144 static int ostm_set_oneshot(struct clock_event_device *ced)
145 {
146 	struct ostm_device *ostm = ced_to_ostm(ced);
147 
148 	ostm_timer_stop(ostm);
149 
150 	return 0;
151 }
152 
153 static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id)
154 {
155 	struct ostm_device *ostm = dev_id;
156 
157 	if (clockevent_state_oneshot(&ostm->ced))
158 		ostm_timer_stop(ostm);
159 
160 	/* notify clockevent layer */
161 	if (ostm->ced.event_handler)
162 		ostm->ced.event_handler(&ostm->ced);
163 
164 	return IRQ_HANDLED;
165 }
166 
167 static int __init ostm_init_clkevt(struct ostm_device *ostm, int irq,
168 			unsigned long rate)
169 {
170 	struct clock_event_device *ced = &ostm->ced;
171 	int ret = -ENXIO;
172 
173 	ret = request_irq(irq, ostm_timer_interrupt,
174 			  IRQF_TIMER | IRQF_IRQPOLL,
175 			  "ostm", ostm);
176 	if (ret) {
177 		pr_err("ostm: failed to request irq\n");
178 		return ret;
179 	}
180 
181 	ced->name = "ostm";
182 	ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
183 	ced->set_state_shutdown = ostm_shutdown;
184 	ced->set_state_periodic = ostm_set_periodic;
185 	ced->set_state_oneshot = ostm_set_oneshot;
186 	ced->set_next_event = ostm_clock_event_next;
187 	ced->shift = 32;
188 	ced->rating = 300;
189 	ced->cpumask = cpumask_of(0);
190 	clockevents_config_and_register(ced, rate, 0xf, 0xffffffff);
191 
192 	return 0;
193 }
194 
195 static int __init ostm_init(struct device_node *np)
196 {
197 	struct ostm_device *ostm;
198 	int ret = -EFAULT;
199 	struct clk *ostm_clk = NULL;
200 	int irq;
201 	unsigned long rate;
202 
203 	ostm = kzalloc(sizeof(*ostm), GFP_KERNEL);
204 	if (!ostm)
205 		return -ENOMEM;
206 
207 	ostm->base = of_iomap(np, 0);
208 	if (!ostm->base) {
209 		pr_err("ostm: failed to remap I/O memory\n");
210 		goto err;
211 	}
212 
213 	irq = irq_of_parse_and_map(np, 0);
214 	if (irq < 0) {
215 		pr_err("ostm: Failed to get irq\n");
216 		goto err;
217 	}
218 
219 	ostm_clk = of_clk_get(np, 0);
220 	if (IS_ERR(ostm_clk)) {
221 		pr_err("ostm: Failed to get clock\n");
222 		ostm_clk = NULL;
223 		goto err;
224 	}
225 
226 	ret = clk_prepare_enable(ostm_clk);
227 	if (ret) {
228 		pr_err("ostm: Failed to enable clock\n");
229 		goto err;
230 	}
231 
232 	rate = clk_get_rate(ostm_clk);
233 	ostm->ticks_per_jiffy = (rate + HZ / 2) / HZ;
234 
235 	/*
236 	 * First probed device will be used as system clocksource. Any
237 	 * additional devices will be used as clock events.
238 	 */
239 	if (!system_clock) {
240 		ret = ostm_init_clksrc(ostm, rate);
241 
242 		if (!ret) {
243 			ostm_init_sched_clock(ostm, rate);
244 			pr_info("ostm: used for clocksource\n");
245 		}
246 
247 	} else {
248 		ret = ostm_init_clkevt(ostm, irq, rate);
249 
250 		if (!ret)
251 			pr_info("ostm: used for clock events\n");
252 	}
253 
254 err:
255 	if (ret) {
256 		clk_disable_unprepare(ostm_clk);
257 		iounmap(ostm->base);
258 		kfree(ostm);
259 		return ret;
260 	}
261 
262 	return 0;
263 }
264 
265 TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);
266