1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008 STMicroelectronics 4 * Copyright (C) 2010 Alessandro Rubini 5 * Copyright (C) 2010 Linus Walleij for ST-Ericsson 6 */ 7 #include <linux/init.h> 8 #include <linux/interrupt.h> 9 #include <linux/irq.h> 10 #include <linux/io.h> 11 #include <linux/clockchips.h> 12 #include <linux/clocksource.h> 13 #include <linux/of_address.h> 14 #include <linux/of_irq.h> 15 #include <linux/of_platform.h> 16 #include <linux/clk.h> 17 #include <linux/jiffies.h> 18 #include <linux/delay.h> 19 #include <linux/err.h> 20 #include <linux/sched_clock.h> 21 #include <asm/mach/time.h> 22 23 /* 24 * The MTU device hosts four different counters, with 4 set of 25 * registers. These are register names. 26 */ 27 28 #define MTU_IMSC 0x00 /* Interrupt mask set/clear */ 29 #define MTU_RIS 0x04 /* Raw interrupt status */ 30 #define MTU_MIS 0x08 /* Masked interrupt status */ 31 #define MTU_ICR 0x0C /* Interrupt clear register */ 32 33 /* per-timer registers take 0..3 as argument */ 34 #define MTU_LR(x) (0x10 + 0x10 * (x) + 0x00) /* Load value */ 35 #define MTU_VAL(x) (0x10 + 0x10 * (x) + 0x04) /* Current value */ 36 #define MTU_CR(x) (0x10 + 0x10 * (x) + 0x08) /* Control reg */ 37 #define MTU_BGLR(x) (0x10 + 0x10 * (x) + 0x0c) /* At next overflow */ 38 39 /* bits for the control register */ 40 #define MTU_CRn_ENA 0x80 41 #define MTU_CRn_PERIODIC 0x40 /* if 0 = free-running */ 42 #define MTU_CRn_PRESCALE_MASK 0x0c 43 #define MTU_CRn_PRESCALE_1 0x00 44 #define MTU_CRn_PRESCALE_16 0x04 45 #define MTU_CRn_PRESCALE_256 0x08 46 #define MTU_CRn_32BITS 0x02 47 #define MTU_CRn_ONESHOT 0x01 /* if 0 = wraps reloading from BGLR*/ 48 49 /* Other registers are usual amba/primecell registers, currently not used */ 50 #define MTU_ITCR 0xff0 51 #define MTU_ITOP 0xff4 52 53 #define MTU_PERIPH_ID0 0xfe0 54 #define MTU_PERIPH_ID1 0xfe4 55 #define MTU_PERIPH_ID2 0xfe8 56 #define MTU_PERIPH_ID3 0xfeC 57 58 #define MTU_PCELL0 0xff0 59 #define MTU_PCELL1 0xff4 60 #define MTU_PCELL2 0xff8 61 #define MTU_PCELL3 0xffC 62 63 static void __iomem *mtu_base; 64 static bool clkevt_periodic; 65 static u32 clk_prescale; 66 static u32 nmdk_cycle; /* write-once */ 67 static struct delay_timer mtu_delay_timer; 68 69 /* 70 * Override the global weak sched_clock symbol with this 71 * local implementation which uses the clocksource to get some 72 * better resolution when scheduling the kernel. 73 */ 74 static u64 notrace nomadik_read_sched_clock(void) 75 { 76 if (unlikely(!mtu_base)) 77 return 0; 78 79 return -readl(mtu_base + MTU_VAL(0)); 80 } 81 82 static unsigned long nmdk_timer_read_current_timer(void) 83 { 84 return ~readl_relaxed(mtu_base + MTU_VAL(0)); 85 } 86 87 /* Clockevent device: use one-shot mode */ 88 static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev) 89 { 90 writel(1 << 1, mtu_base + MTU_IMSC); 91 writel(evt, mtu_base + MTU_LR(1)); 92 /* Load highest value, enable device, enable interrupts */ 93 writel(MTU_CRn_ONESHOT | clk_prescale | 94 MTU_CRn_32BITS | MTU_CRn_ENA, 95 mtu_base + MTU_CR(1)); 96 97 return 0; 98 } 99 100 static void nmdk_clkevt_reset(void) 101 { 102 if (clkevt_periodic) { 103 /* Timer: configure load and background-load, and fire it up */ 104 writel(nmdk_cycle, mtu_base + MTU_LR(1)); 105 writel(nmdk_cycle, mtu_base + MTU_BGLR(1)); 106 107 writel(MTU_CRn_PERIODIC | clk_prescale | 108 MTU_CRn_32BITS | MTU_CRn_ENA, 109 mtu_base + MTU_CR(1)); 110 writel(1 << 1, mtu_base + MTU_IMSC); 111 } else { 112 /* Generate an interrupt to start the clockevent again */ 113 (void) nmdk_clkevt_next(nmdk_cycle, NULL); 114 } 115 } 116 117 static int nmdk_clkevt_shutdown(struct clock_event_device *evt) 118 { 119 writel(0, mtu_base + MTU_IMSC); 120 /* disable timer */ 121 writel(0, mtu_base + MTU_CR(1)); 122 /* load some high default value */ 123 writel(0xffffffff, mtu_base + MTU_LR(1)); 124 return 0; 125 } 126 127 static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt) 128 { 129 clkevt_periodic = false; 130 return 0; 131 } 132 133 static int nmdk_clkevt_set_periodic(struct clock_event_device *evt) 134 { 135 clkevt_periodic = true; 136 nmdk_clkevt_reset(); 137 return 0; 138 } 139 140 static void nmdk_clksrc_reset(void) 141 { 142 /* Disable */ 143 writel(0, mtu_base + MTU_CR(0)); 144 145 /* ClockSource: configure load and background-load, and fire it up */ 146 writel(nmdk_cycle, mtu_base + MTU_LR(0)); 147 writel(nmdk_cycle, mtu_base + MTU_BGLR(0)); 148 149 writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA, 150 mtu_base + MTU_CR(0)); 151 } 152 153 static void nmdk_clkevt_resume(struct clock_event_device *cedev) 154 { 155 nmdk_clkevt_reset(); 156 nmdk_clksrc_reset(); 157 } 158 159 static struct clock_event_device nmdk_clkevt = { 160 .name = "mtu_1", 161 .features = CLOCK_EVT_FEAT_ONESHOT | 162 CLOCK_EVT_FEAT_PERIODIC | 163 CLOCK_EVT_FEAT_DYNIRQ, 164 .rating = 200, 165 .set_state_shutdown = nmdk_clkevt_shutdown, 166 .set_state_periodic = nmdk_clkevt_set_periodic, 167 .set_state_oneshot = nmdk_clkevt_set_oneshot, 168 .set_next_event = nmdk_clkevt_next, 169 .resume = nmdk_clkevt_resume, 170 }; 171 172 /* 173 * IRQ Handler for timer 1 of the MTU block. 174 */ 175 static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id) 176 { 177 struct clock_event_device *evdev = dev_id; 178 179 writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */ 180 evdev->event_handler(evdev); 181 return IRQ_HANDLED; 182 } 183 184 static int __init nmdk_timer_init(void __iomem *base, int irq, 185 struct clk *pclk, struct clk *clk) 186 { 187 unsigned long rate; 188 int ret; 189 190 mtu_base = base; 191 192 BUG_ON(clk_prepare_enable(pclk)); 193 BUG_ON(clk_prepare_enable(clk)); 194 195 /* 196 * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz 197 * for ux500. 198 * Use a divide-by-16 counter if the tick rate is more than 32MHz. 199 * At 32 MHz, the timer (with 32 bit counter) can be programmed 200 * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer 201 * with 16 gives too low timer resolution. 202 */ 203 rate = clk_get_rate(clk); 204 if (rate > 32000000) { 205 rate /= 16; 206 clk_prescale = MTU_CRn_PRESCALE_16; 207 } else { 208 clk_prescale = MTU_CRn_PRESCALE_1; 209 } 210 211 /* Cycles for periodic mode */ 212 nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ); 213 214 215 /* Timer 0 is the free running clocksource */ 216 nmdk_clksrc_reset(); 217 218 ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0", 219 rate, 200, 32, clocksource_mmio_readl_down); 220 if (ret) { 221 pr_err("timer: failed to initialize clock source %s\n", "mtu_0"); 222 return ret; 223 } 224 225 sched_clock_register(nomadik_read_sched_clock, 32, rate); 226 227 /* Timer 1 is used for events, register irq and clockevents */ 228 if (request_irq(irq, nmdk_timer_interrupt, IRQF_TIMER, 229 "Nomadik Timer Tick", &nmdk_clkevt)) 230 pr_err("%s: request_irq() failed\n", "Nomadik Timer Tick"); 231 nmdk_clkevt.cpumask = cpumask_of(0); 232 nmdk_clkevt.irq = irq; 233 clockevents_config_and_register(&nmdk_clkevt, rate, 2, 0xffffffffU); 234 235 mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer; 236 mtu_delay_timer.freq = rate; 237 register_current_timer_delay(&mtu_delay_timer); 238 239 return 0; 240 } 241 242 static int __init nmdk_timer_of_init(struct device_node *node) 243 { 244 struct clk *pclk; 245 struct clk *clk; 246 void __iomem *base; 247 int irq; 248 249 base = of_iomap(node, 0); 250 if (!base) { 251 pr_err("Can't remap registers\n"); 252 return -ENXIO; 253 } 254 255 pclk = of_clk_get_by_name(node, "apb_pclk"); 256 if (IS_ERR(pclk)) { 257 pr_err("could not get apb_pclk\n"); 258 return PTR_ERR(pclk); 259 } 260 261 clk = of_clk_get_by_name(node, "timclk"); 262 if (IS_ERR(clk)) { 263 pr_err("could not get timclk\n"); 264 return PTR_ERR(clk); 265 } 266 267 irq = irq_of_parse_and_map(node, 0); 268 if (irq <= 0) { 269 pr_err("Can't parse IRQ\n"); 270 return -EINVAL; 271 } 272 273 return nmdk_timer_init(base, irq, pclk, clk); 274 } 275 TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu", 276 nmdk_timer_of_init); 277