1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * i8253 PIT clocksource 4 */ 5 #include <linux/clockchips.h> 6 #include <linux/init.h> 7 #include <linux/io.h> 8 #include <linux/spinlock.h> 9 #include <linux/timex.h> 10 #include <linux/module.h> 11 #include <linux/i8253.h> 12 #include <linux/smp.h> 13 14 /* 15 * Protects access to I/O ports 16 * 17 * 0040-0043 : timer0, i8253 / i8254 18 * 0061-0061 : NMI Control Register which contains two speaker control bits. 19 */ 20 DEFINE_RAW_SPINLOCK(i8253_lock); 21 EXPORT_SYMBOL(i8253_lock); 22 23 #ifdef CONFIG_CLKSRC_I8253 24 /* 25 * Since the PIT overflows every tick, its not very useful 26 * to just read by itself. So use jiffies to emulate a free 27 * running counter: 28 */ 29 static u64 i8253_read(struct clocksource *cs) 30 { 31 static int old_count; 32 static u32 old_jifs; 33 unsigned long flags; 34 int count; 35 u32 jifs; 36 37 raw_spin_lock_irqsave(&i8253_lock, flags); 38 /* 39 * Although our caller may have the read side of jiffies_lock, 40 * this is now a seqlock, and we are cheating in this routine 41 * by having side effects on state that we cannot undo if 42 * there is a collision on the seqlock and our caller has to 43 * retry. (Namely, old_jifs and old_count.) So we must treat 44 * jiffies as volatile despite the lock. We read jiffies 45 * before latching the timer count to guarantee that although 46 * the jiffies value might be older than the count (that is, 47 * the counter may underflow between the last point where 48 * jiffies was incremented and the point where we latch the 49 * count), it cannot be newer. 50 */ 51 jifs = jiffies; 52 outb_p(0x00, PIT_MODE); /* latch the count ASAP */ 53 count = inb_p(PIT_CH0); /* read the latched count */ 54 count |= inb_p(PIT_CH0) << 8; 55 56 /* VIA686a test code... reset the latch if count > max + 1 */ 57 if (count > PIT_LATCH) { 58 outb_p(0x34, PIT_MODE); 59 outb_p(PIT_LATCH & 0xff, PIT_CH0); 60 outb_p(PIT_LATCH >> 8, PIT_CH0); 61 count = PIT_LATCH - 1; 62 } 63 64 /* 65 * It's possible for count to appear to go the wrong way for a 66 * couple of reasons: 67 * 68 * 1. The timer counter underflows, but we haven't handled the 69 * resulting interrupt and incremented jiffies yet. 70 * 2. Hardware problem with the timer, not giving us continuous time, 71 * the counter does small "jumps" upwards on some Pentium systems, 72 * (see c't 95/10 page 335 for Neptun bug.) 73 * 74 * Previous attempts to handle these cases intelligently were 75 * buggy, so we just do the simple thing now. 76 */ 77 if (count > old_count && jifs == old_jifs) 78 count = old_count; 79 80 old_count = count; 81 old_jifs = jifs; 82 83 raw_spin_unlock_irqrestore(&i8253_lock, flags); 84 85 count = (PIT_LATCH - 1) - count; 86 87 return (u64)(jifs * PIT_LATCH) + count; 88 } 89 90 static struct clocksource i8253_cs = { 91 .name = "pit", 92 .rating = 110, 93 .read = i8253_read, 94 .mask = CLOCKSOURCE_MASK(32), 95 }; 96 97 int __init clocksource_i8253_init(void) 98 { 99 return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); 100 } 101 #endif 102 103 #ifdef CONFIG_CLKEVT_I8253 104 static int pit_shutdown(struct clock_event_device *evt) 105 { 106 if (!clockevent_state_oneshot(evt) && !clockevent_state_periodic(evt)) 107 return 0; 108 109 raw_spin_lock(&i8253_lock); 110 111 outb_p(0x30, PIT_MODE); 112 outb_p(0, PIT_CH0); 113 outb_p(0, PIT_CH0); 114 115 raw_spin_unlock(&i8253_lock); 116 return 0; 117 } 118 119 static int pit_set_oneshot(struct clock_event_device *evt) 120 { 121 raw_spin_lock(&i8253_lock); 122 outb_p(0x38, PIT_MODE); 123 raw_spin_unlock(&i8253_lock); 124 return 0; 125 } 126 127 static int pit_set_periodic(struct clock_event_device *evt) 128 { 129 raw_spin_lock(&i8253_lock); 130 131 /* binary, mode 2, LSB/MSB, ch 0 */ 132 outb_p(0x34, PIT_MODE); 133 outb_p(PIT_LATCH & 0xff, PIT_CH0); /* LSB */ 134 outb_p(PIT_LATCH >> 8, PIT_CH0); /* MSB */ 135 136 raw_spin_unlock(&i8253_lock); 137 return 0; 138 } 139 140 /* 141 * Program the next event in oneshot mode 142 * 143 * Delta is given in PIT ticks 144 */ 145 static int pit_next_event(unsigned long delta, struct clock_event_device *evt) 146 { 147 raw_spin_lock(&i8253_lock); 148 outb_p(delta & 0xff , PIT_CH0); /* LSB */ 149 outb_p(delta >> 8 , PIT_CH0); /* MSB */ 150 raw_spin_unlock(&i8253_lock); 151 152 return 0; 153 } 154 155 /* 156 * On UP the PIT can serve all of the possible timer functions. On SMP systems 157 * it can be solely used for the global tick. 158 */ 159 struct clock_event_device i8253_clockevent = { 160 .name = "pit", 161 .features = CLOCK_EVT_FEAT_PERIODIC, 162 .set_state_shutdown = pit_shutdown, 163 .set_state_periodic = pit_set_periodic, 164 .set_next_event = pit_next_event, 165 }; 166 167 /* 168 * Initialize the conversion factor and the min/max deltas of the clock event 169 * structure and register the clock event source with the framework. 170 */ 171 void __init clockevent_i8253_init(bool oneshot) 172 { 173 if (oneshot) { 174 i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; 175 i8253_clockevent.set_state_oneshot = pit_set_oneshot; 176 } 177 /* 178 * Start pit with the boot cpu mask. x86 might make it global 179 * when it is used as broadcast device later. 180 */ 181 i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); 182 183 clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE, 184 0xF, 0x7FFF); 185 } 186 #endif 187