1 /* 2 * i8253 PIT clocksource 3 */ 4 #include <linux/clockchips.h> 5 #include <linux/init.h> 6 #include <linux/io.h> 7 #include <linux/spinlock.h> 8 #include <linux/timex.h> 9 #include <linux/module.h> 10 #include <linux/i8253.h> 11 #include <linux/smp.h> 12 13 /* 14 * Protects access to I/O ports 15 * 16 * 0040-0043 : timer0, i8253 / i8254 17 * 0061-0061 : NMI Control Register which contains two speaker control bits. 18 */ 19 DEFINE_RAW_SPINLOCK(i8253_lock); 20 EXPORT_SYMBOL(i8253_lock); 21 22 #ifdef CONFIG_CLKSRC_I8253 23 /* 24 * Since the PIT overflows every tick, its not very useful 25 * to just read by itself. So use jiffies to emulate a free 26 * running counter: 27 */ 28 static cycle_t i8253_read(struct clocksource *cs) 29 { 30 static int old_count; 31 static u32 old_jifs; 32 unsigned long flags; 33 int count; 34 u32 jifs; 35 36 raw_spin_lock_irqsave(&i8253_lock, flags); 37 /* 38 * Although our caller may have the read side of jiffies_lock, 39 * this is now a seqlock, and we are cheating in this routine 40 * by having side effects on state that we cannot undo if 41 * there is a collision on the seqlock and our caller has to 42 * retry. (Namely, old_jifs and old_count.) So we must treat 43 * jiffies as volatile despite the lock. We read jiffies 44 * before latching the timer count to guarantee that although 45 * the jiffies value might be older than the count (that is, 46 * the counter may underflow between the last point where 47 * jiffies was incremented and the point where we latch the 48 * count), it cannot be newer. 49 */ 50 jifs = jiffies; 51 outb_p(0x00, PIT_MODE); /* latch the count ASAP */ 52 count = inb_p(PIT_CH0); /* read the latched count */ 53 count |= inb_p(PIT_CH0) << 8; 54 55 /* VIA686a test code... reset the latch if count > max + 1 */ 56 if (count > PIT_LATCH) { 57 outb_p(0x34, PIT_MODE); 58 outb_p(PIT_LATCH & 0xff, PIT_CH0); 59 outb_p(PIT_LATCH >> 8, PIT_CH0); 60 count = PIT_LATCH - 1; 61 } 62 63 /* 64 * It's possible for count to appear to go the wrong way for a 65 * couple of reasons: 66 * 67 * 1. The timer counter underflows, but we haven't handled the 68 * resulting interrupt and incremented jiffies yet. 69 * 2. Hardware problem with the timer, not giving us continuous time, 70 * the counter does small "jumps" upwards on some Pentium systems, 71 * (see c't 95/10 page 335 for Neptun bug.) 72 * 73 * Previous attempts to handle these cases intelligently were 74 * buggy, so we just do the simple thing now. 75 */ 76 if (count > old_count && jifs == old_jifs) 77 count = old_count; 78 79 old_count = count; 80 old_jifs = jifs; 81 82 raw_spin_unlock_irqrestore(&i8253_lock, flags); 83 84 count = (PIT_LATCH - 1) - count; 85 86 return (cycle_t)(jifs * PIT_LATCH) + count; 87 } 88 89 static struct clocksource i8253_cs = { 90 .name = "pit", 91 .rating = 110, 92 .read = i8253_read, 93 .mask = CLOCKSOURCE_MASK(32), 94 }; 95 96 int __init clocksource_i8253_init(void) 97 { 98 return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); 99 } 100 #endif 101 102 #ifdef CONFIG_CLKEVT_I8253 103 static int pit_shutdown(struct clock_event_device *evt) 104 { 105 if (!clockevent_state_oneshot(evt) && !clockevent_state_periodic(evt)) 106 return 0; 107 108 raw_spin_lock(&i8253_lock); 109 110 outb_p(0x30, PIT_MODE); 111 outb_p(0, PIT_CH0); 112 outb_p(0, PIT_CH0); 113 114 raw_spin_unlock(&i8253_lock); 115 return 0; 116 } 117 118 static int pit_set_oneshot(struct clock_event_device *evt) 119 { 120 raw_spin_lock(&i8253_lock); 121 outb_p(0x38, PIT_MODE); 122 raw_spin_unlock(&i8253_lock); 123 return 0; 124 } 125 126 static int pit_set_periodic(struct clock_event_device *evt) 127 { 128 raw_spin_lock(&i8253_lock); 129 130 /* binary, mode 2, LSB/MSB, ch 0 */ 131 outb_p(0x34, PIT_MODE); 132 outb_p(PIT_LATCH & 0xff, PIT_CH0); /* LSB */ 133 outb_p(PIT_LATCH >> 8, PIT_CH0); /* MSB */ 134 135 raw_spin_unlock(&i8253_lock); 136 return 0; 137 } 138 139 /* 140 * Program the next event in oneshot mode 141 * 142 * Delta is given in PIT ticks 143 */ 144 static int pit_next_event(unsigned long delta, struct clock_event_device *evt) 145 { 146 raw_spin_lock(&i8253_lock); 147 outb_p(delta & 0xff , PIT_CH0); /* LSB */ 148 outb_p(delta >> 8 , PIT_CH0); /* MSB */ 149 raw_spin_unlock(&i8253_lock); 150 151 return 0; 152 } 153 154 /* 155 * On UP the PIT can serve all of the possible timer functions. On SMP systems 156 * it can be solely used for the global tick. 157 */ 158 struct clock_event_device i8253_clockevent = { 159 .name = "pit", 160 .features = CLOCK_EVT_FEAT_PERIODIC, 161 .set_state_shutdown = pit_shutdown, 162 .set_state_periodic = pit_set_periodic, 163 .set_next_event = pit_next_event, 164 }; 165 166 /* 167 * Initialize the conversion factor and the min/max deltas of the clock event 168 * structure and register the clock event source with the framework. 169 */ 170 void __init clockevent_i8253_init(bool oneshot) 171 { 172 if (oneshot) { 173 i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; 174 i8253_clockevent.set_state_oneshot = pit_set_oneshot; 175 } 176 /* 177 * Start pit with the boot cpu mask. x86 might make it global 178 * when it is used as broadcast device later. 179 */ 180 i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); 181 182 clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE, 183 0xF, 0x7FFF); 184 } 185 #endif 186