xref: /openbmc/linux/drivers/clocksource/hyperv_timer.c (revision ae6f2db4d59e9f8c90cb3c2d2a954832898d0f2b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Clocksource driver for the synthetic counter and timers
5  * provided by the Hyper-V hypervisor to guest VMs, as described
6  * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7  * is instruction set architecture independent.
8  *
9  * Copyright (C) 2019, Microsoft, Inc.
10  *
11  * Author:  Michael Kelley <mikelley@microsoft.com>
12  */
13 
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
28 
29 static struct clock_event_device __percpu *hv_clock_event;
30 static u64 hv_sched_clock_offset __ro_after_init;
31 
32 /*
33  * If false, we're using the old mechanism for stimer0 interrupts
34  * where it sends a VMbus message when it expires. The old
35  * mechanism is used when running on older versions of Hyper-V
36  * that don't support Direct Mode. While Hyper-V provides
37  * four stimer's per CPU, Linux uses only stimer0.
38  *
39  * Because Direct Mode does not require processing a VMbus
40  * message, stimer interrupts can be enabled earlier in the
41  * process of booting a CPU, and consistent with when timer
42  * interrupts are enabled for other clocksource drivers.
43  * However, for legacy versions of Hyper-V when Direct Mode
44  * is not enabled, setting up stimer interrupts must be
45  * delayed until VMbus is initialized and can process the
46  * interrupt message.
47  */
48 static bool direct_mode_enabled;
49 
50 static int stimer0_irq = -1;
51 static int stimer0_message_sint;
52 static DEFINE_PER_CPU(long, stimer0_evt);
53 
54 /*
55  * Common code for stimer0 interrupts coming via Direct Mode or
56  * as a VMbus message.
57  */
58 void hv_stimer0_isr(void)
59 {
60 	struct clock_event_device *ce;
61 
62 	ce = this_cpu_ptr(hv_clock_event);
63 	ce->event_handler(ce);
64 }
65 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
66 
67 /*
68  * stimer0 interrupt handler for architectures that support
69  * per-cpu interrupts, which also implies Direct Mode.
70  */
71 static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
72 {
73 	hv_stimer0_isr();
74 	return IRQ_HANDLED;
75 }
76 
77 static int hv_ce_set_next_event(unsigned long delta,
78 				struct clock_event_device *evt)
79 {
80 	u64 current_tick;
81 
82 	current_tick = hv_read_reference_counter();
83 	current_tick += delta;
84 	hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
85 	return 0;
86 }
87 
88 static int hv_ce_shutdown(struct clock_event_device *evt)
89 {
90 	hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
91 	hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
92 	if (direct_mode_enabled && stimer0_irq >= 0)
93 		disable_percpu_irq(stimer0_irq);
94 
95 	return 0;
96 }
97 
98 static int hv_ce_set_oneshot(struct clock_event_device *evt)
99 {
100 	union hv_stimer_config timer_cfg;
101 
102 	timer_cfg.as_uint64 = 0;
103 	timer_cfg.enable = 1;
104 	timer_cfg.auto_enable = 1;
105 	if (direct_mode_enabled) {
106 		/*
107 		 * When it expires, the timer will directly interrupt
108 		 * on the specified hardware vector/IRQ.
109 		 */
110 		timer_cfg.direct_mode = 1;
111 		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112 		if (stimer0_irq >= 0)
113 			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114 	} else {
115 		/*
116 		 * When it expires, the timer will generate a VMbus message,
117 		 * to be handled by the normal VMbus interrupt handler.
118 		 */
119 		timer_cfg.direct_mode = 0;
120 		timer_cfg.sintx = stimer0_message_sint;
121 	}
122 	hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
123 	return 0;
124 }
125 
126 /*
127  * hv_stimer_init - Per-cpu initialization of the clockevent
128  */
129 static int hv_stimer_init(unsigned int cpu)
130 {
131 	struct clock_event_device *ce;
132 
133 	if (!hv_clock_event)
134 		return 0;
135 
136 	ce = per_cpu_ptr(hv_clock_event, cpu);
137 	ce->name = "Hyper-V clockevent";
138 	ce->features = CLOCK_EVT_FEAT_ONESHOT;
139 	ce->cpumask = cpumask_of(cpu);
140 	ce->rating = 1000;
141 	ce->set_state_shutdown = hv_ce_shutdown;
142 	ce->set_state_oneshot = hv_ce_set_oneshot;
143 	ce->set_next_event = hv_ce_set_next_event;
144 
145 	clockevents_config_and_register(ce,
146 					HV_CLOCK_HZ,
147 					HV_MIN_DELTA_TICKS,
148 					HV_MAX_MAX_DELTA_TICKS);
149 	return 0;
150 }
151 
152 /*
153  * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
154  */
155 int hv_stimer_cleanup(unsigned int cpu)
156 {
157 	struct clock_event_device *ce;
158 
159 	if (!hv_clock_event)
160 		return 0;
161 
162 	/*
163 	 * In the legacy case where Direct Mode is not enabled
164 	 * (which can only be on x86/64), stimer cleanup happens
165 	 * relatively early in the CPU offlining process. We
166 	 * must unbind the stimer-based clockevent device so
167 	 * that the LAPIC timer can take over until clockevents
168 	 * are no longer needed in the offlining process. Note
169 	 * that clockevents_unbind_device() eventually calls
170 	 * hv_ce_shutdown().
171 	 *
172 	 * The unbind should not be done when Direct Mode is
173 	 * enabled because we may be on an architecture where
174 	 * there are no other clockevent devices to fallback to.
175 	 */
176 	ce = per_cpu_ptr(hv_clock_event, cpu);
177 	if (direct_mode_enabled)
178 		hv_ce_shutdown(ce);
179 	else
180 		clockevents_unbind_device(ce, cpu);
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
185 
186 /*
187  * These placeholders are overridden by arch specific code on
188  * architectures that need special setup of the stimer0 IRQ because
189  * they don't support per-cpu IRQs (such as x86/x64).
190  */
191 void __weak hv_setup_stimer0_handler(void (*handler)(void))
192 {
193 };
194 
195 void __weak hv_remove_stimer0_handler(void)
196 {
197 };
198 
199 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
200 static int hv_setup_stimer0_irq(void)
201 {
202 	int ret;
203 
204 	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
205 			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
206 	if (ret < 0) {
207 		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
208 		return ret;
209 	}
210 	stimer0_irq = ret;
211 
212 	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
213 		"Hyper-V stimer0", &stimer0_evt);
214 	if (ret) {
215 		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
216 			stimer0_irq, ret);
217 		acpi_unregister_gsi(stimer0_irq);
218 		stimer0_irq = -1;
219 	}
220 	return ret;
221 }
222 
223 static void hv_remove_stimer0_irq(void)
224 {
225 	if (stimer0_irq == -1) {
226 		hv_remove_stimer0_handler();
227 	} else {
228 		free_percpu_irq(stimer0_irq, &stimer0_evt);
229 		acpi_unregister_gsi(stimer0_irq);
230 		stimer0_irq = -1;
231 	}
232 }
233 
234 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
235 int hv_stimer_alloc(bool have_percpu_irqs)
236 {
237 	int ret;
238 
239 	/*
240 	 * Synthetic timers are always available except on old versions of
241 	 * Hyper-V on x86.  In that case, return as error as Linux will use a
242 	 * clockevent based on emulated LAPIC timer hardware.
243 	 */
244 	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
245 		return -EINVAL;
246 
247 	hv_clock_event = alloc_percpu(struct clock_event_device);
248 	if (!hv_clock_event)
249 		return -ENOMEM;
250 
251 	direct_mode_enabled = ms_hyperv.misc_features &
252 			HV_STIMER_DIRECT_MODE_AVAILABLE;
253 
254 	/*
255 	 * If Direct Mode isn't enabled, the remainder of the initialization
256 	 * is done later by hv_stimer_legacy_init()
257 	 */
258 	if (!direct_mode_enabled)
259 		return 0;
260 
261 	if (have_percpu_irqs) {
262 		ret = hv_setup_stimer0_irq();
263 		if (ret)
264 			goto free_clock_event;
265 	} else {
266 		hv_setup_stimer0_handler(hv_stimer0_isr);
267 	}
268 
269 	/*
270 	 * Since we are in Direct Mode, stimer initialization
271 	 * can be done now with a CPUHP value in the same range
272 	 * as other clockevent devices.
273 	 */
274 	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
275 			"clockevents/hyperv/stimer:starting",
276 			hv_stimer_init, hv_stimer_cleanup);
277 	if (ret < 0) {
278 		hv_remove_stimer0_irq();
279 		goto free_clock_event;
280 	}
281 	return ret;
282 
283 free_clock_event:
284 	free_percpu(hv_clock_event);
285 	hv_clock_event = NULL;
286 	return ret;
287 }
288 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
289 
290 /*
291  * hv_stimer_legacy_init -- Called from the VMbus driver to handle
292  * the case when Direct Mode is not enabled, and the stimer
293  * must be initialized late in the CPU onlining process.
294  *
295  */
296 void hv_stimer_legacy_init(unsigned int cpu, int sint)
297 {
298 	if (direct_mode_enabled)
299 		return;
300 
301 	/*
302 	 * This function gets called by each vCPU, so setting the
303 	 * global stimer_message_sint value each time is conceptually
304 	 * not ideal, but the value passed in is always the same and
305 	 * it avoids introducing yet another interface into this
306 	 * clocksource driver just to set the sint in the legacy case.
307 	 */
308 	stimer0_message_sint = sint;
309 	(void)hv_stimer_init(cpu);
310 }
311 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
312 
313 /*
314  * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
315  * handle the case when Direct Mode is not enabled, and the
316  * stimer must be cleaned up early in the CPU offlining
317  * process.
318  */
319 void hv_stimer_legacy_cleanup(unsigned int cpu)
320 {
321 	if (direct_mode_enabled)
322 		return;
323 	(void)hv_stimer_cleanup(cpu);
324 }
325 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
326 
327 /*
328  * Do a global cleanup of clockevents for the cases of kexec and
329  * vmbus exit
330  */
331 void hv_stimer_global_cleanup(void)
332 {
333 	int	cpu;
334 
335 	/*
336 	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
337 	 * Mode is not enabled, and fallback to the LAPIC timer.
338 	 */
339 	for_each_present_cpu(cpu) {
340 		hv_stimer_legacy_cleanup(cpu);
341 	}
342 
343 	if (!hv_clock_event)
344 		return;
345 
346 	if (direct_mode_enabled) {
347 		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
348 		hv_remove_stimer0_irq();
349 		stimer0_irq = -1;
350 	}
351 	free_percpu(hv_clock_event);
352 	hv_clock_event = NULL;
353 
354 }
355 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
356 
357 /*
358  * Code and definitions for the Hyper-V clocksources.  Two
359  * clocksources are defined: one that reads the Hyper-V defined MSR, and
360  * the other that uses the TSC reference page feature as defined in the
361  * TLFS.  The MSR version is for compatibility with old versions of
362  * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
363  */
364 
365 static union {
366 	struct ms_hyperv_tsc_page page;
367 	u8 reserved[PAGE_SIZE];
368 } tsc_pg __aligned(PAGE_SIZE);
369 
370 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
371 {
372 	return &tsc_pg.page;
373 }
374 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
375 
376 static u64 notrace read_hv_clock_tsc(void)
377 {
378 	u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
379 
380 	if (current_tick == U64_MAX)
381 		current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
382 
383 	return current_tick;
384 }
385 
386 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
387 {
388 	return read_hv_clock_tsc();
389 }
390 
391 static u64 notrace read_hv_sched_clock_tsc(void)
392 {
393 	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
394 		(NSEC_PER_SEC / HV_CLOCK_HZ);
395 }
396 
397 static void suspend_hv_clock_tsc(struct clocksource *arg)
398 {
399 	union hv_reference_tsc_msr tsc_msr;
400 
401 	/* Disable the TSC page */
402 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
403 	tsc_msr.enable = 0;
404 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
405 }
406 
407 
408 static void resume_hv_clock_tsc(struct clocksource *arg)
409 {
410 	phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
411 	union hv_reference_tsc_msr tsc_msr;
412 
413 	/* Re-enable the TSC page */
414 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
415 	tsc_msr.enable = 1;
416 	tsc_msr.pfn = HVPFN_DOWN(phys_addr);
417 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
418 }
419 
420 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
421 static int hv_cs_enable(struct clocksource *cs)
422 {
423 	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
424 	return 0;
425 }
426 #endif
427 
428 static struct clocksource hyperv_cs_tsc = {
429 	.name	= "hyperv_clocksource_tsc_page",
430 	.rating	= 500,
431 	.read	= read_hv_clock_tsc_cs,
432 	.mask	= CLOCKSOURCE_MASK(64),
433 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
434 	.suspend= suspend_hv_clock_tsc,
435 	.resume	= resume_hv_clock_tsc,
436 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
437 	.enable = hv_cs_enable,
438 	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
439 #else
440 	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
441 #endif
442 };
443 
444 static u64 notrace read_hv_clock_msr(void)
445 {
446 	/*
447 	 * Read the partition counter to get the current tick count. This count
448 	 * is set to 0 when the partition is created and is incremented in
449 	 * 100 nanosecond units.
450 	 */
451 	return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
452 }
453 
454 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
455 {
456 	return read_hv_clock_msr();
457 }
458 
459 static u64 notrace read_hv_sched_clock_msr(void)
460 {
461 	return (read_hv_clock_msr() - hv_sched_clock_offset) *
462 		(NSEC_PER_SEC / HV_CLOCK_HZ);
463 }
464 
465 static struct clocksource hyperv_cs_msr = {
466 	.name	= "hyperv_clocksource_msr",
467 	.rating	= 500,
468 	.read	= read_hv_clock_msr_cs,
469 	.mask	= CLOCKSOURCE_MASK(64),
470 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
471 };
472 
473 /*
474  * Reference to pv_ops must be inline so objtool
475  * detection of noinstr violations can work correctly.
476  */
477 #ifdef CONFIG_GENERIC_SCHED_CLOCK
478 static __always_inline void hv_setup_sched_clock(void *sched_clock)
479 {
480 	/*
481 	 * We're on an architecture with generic sched clock (not x86/x64).
482 	 * The Hyper-V sched clock read function returns nanoseconds, not
483 	 * the normal 100ns units of the Hyper-V synthetic clock.
484 	 */
485 	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
486 }
487 #elif defined CONFIG_PARAVIRT
488 static __always_inline void hv_setup_sched_clock(void *sched_clock)
489 {
490 	/* We're on x86/x64 *and* using PV ops */
491 	paravirt_set_sched_clock(sched_clock);
492 }
493 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
494 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
495 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
496 
497 static bool __init hv_init_tsc_clocksource(void)
498 {
499 	union hv_reference_tsc_msr tsc_msr;
500 	phys_addr_t	phys_addr;
501 
502 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
503 		return false;
504 
505 	if (hv_root_partition)
506 		return false;
507 
508 	/*
509 	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
510 	 * handles frequency and offset changes due to live migration,
511 	 * pause/resume, and other VM management operations.  So lower the
512 	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
513 	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
514 	 * TSC will be preferred over the virtualized ARM64 arch counter.
515 	 * While the Hyper-V MSR clocksource won't be used since the
516 	 * Reference TSC clocksource is present, change its rating as
517 	 * well for consistency.
518 	 */
519 	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
520 		hyperv_cs_tsc.rating = 250;
521 		hyperv_cs_msr.rating = 250;
522 	}
523 
524 	hv_read_reference_counter = read_hv_clock_tsc;
525 	phys_addr = virt_to_phys(hv_get_tsc_page());
526 
527 	/*
528 	 * The Hyper-V TLFS specifies to preserve the value of reserved
529 	 * bits in registers. So read the existing value, preserve the
530 	 * low order 12 bits, and add in the guest physical address
531 	 * (which already has at least the low 12 bits set to zero since
532 	 * it is page aligned). Also set the "enable" bit, which is bit 0.
533 	 */
534 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
535 	tsc_msr.enable = 1;
536 	tsc_msr.pfn = HVPFN_DOWN(phys_addr);
537 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
538 
539 	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
540 
541 	hv_sched_clock_offset = hv_read_reference_counter();
542 	hv_setup_sched_clock(read_hv_sched_clock_tsc);
543 
544 	return true;
545 }
546 
547 void __init hv_init_clocksource(void)
548 {
549 	/*
550 	 * Try to set up the TSC page clocksource. If it succeeds, we're
551 	 * done. Otherwise, set up the MSR clocksource.  At least one of
552 	 * these will always be available except on very old versions of
553 	 * Hyper-V on x86.  In that case we won't have a Hyper-V
554 	 * clocksource, but Linux will still run with a clocksource based
555 	 * on the emulated PIT or LAPIC timer.
556 	 */
557 	if (hv_init_tsc_clocksource())
558 		return;
559 
560 	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
561 		return;
562 
563 	hv_read_reference_counter = read_hv_clock_msr;
564 	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
565 
566 	hv_sched_clock_offset = hv_read_reference_counter();
567 	hv_setup_sched_clock(read_hv_sched_clock_msr);
568 }
569