1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Clocksource driver for the synthetic counter and timers 5 * provided by the Hyper-V hypervisor to guest VMs, as described 6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver 7 * is instruction set architecture independent. 8 * 9 * Copyright (C) 2019, Microsoft, Inc. 10 * 11 * Author: Michael Kelley <mikelley@microsoft.com> 12 */ 13 14 #include <linux/percpu.h> 15 #include <linux/cpumask.h> 16 #include <linux/clockchips.h> 17 #include <linux/clocksource.h> 18 #include <linux/sched_clock.h> 19 #include <linux/mm.h> 20 #include <clocksource/hyperv_timer.h> 21 #include <asm/hyperv-tlfs.h> 22 #include <asm/mshyperv.h> 23 24 static struct clock_event_device __percpu *hv_clock_event; 25 static u64 hv_sched_clock_offset __ro_after_init; 26 27 /* 28 * If false, we're using the old mechanism for stimer0 interrupts 29 * where it sends a VMbus message when it expires. The old 30 * mechanism is used when running on older versions of Hyper-V 31 * that don't support Direct Mode. While Hyper-V provides 32 * four stimer's per CPU, Linux uses only stimer0. 33 */ 34 static bool direct_mode_enabled; 35 36 static int stimer0_irq; 37 static int stimer0_vector; 38 static int stimer0_message_sint; 39 40 /* 41 * ISR for when stimer0 is operating in Direct Mode. Direct Mode 42 * does not use VMbus or any VMbus messages, so process here and not 43 * in the VMbus driver code. 44 */ 45 void hv_stimer0_isr(void) 46 { 47 struct clock_event_device *ce; 48 49 ce = this_cpu_ptr(hv_clock_event); 50 ce->event_handler(ce); 51 } 52 EXPORT_SYMBOL_GPL(hv_stimer0_isr); 53 54 static int hv_ce_set_next_event(unsigned long delta, 55 struct clock_event_device *evt) 56 { 57 u64 current_tick; 58 59 current_tick = hyperv_cs->read(NULL); 60 current_tick += delta; 61 hv_init_timer(0, current_tick); 62 return 0; 63 } 64 65 static int hv_ce_shutdown(struct clock_event_device *evt) 66 { 67 hv_init_timer(0, 0); 68 hv_init_timer_config(0, 0); 69 if (direct_mode_enabled) 70 hv_disable_stimer0_percpu_irq(stimer0_irq); 71 72 return 0; 73 } 74 75 static int hv_ce_set_oneshot(struct clock_event_device *evt) 76 { 77 union hv_stimer_config timer_cfg; 78 79 timer_cfg.as_uint64 = 0; 80 timer_cfg.enable = 1; 81 timer_cfg.auto_enable = 1; 82 if (direct_mode_enabled) { 83 /* 84 * When it expires, the timer will directly interrupt 85 * on the specified hardware vector/IRQ. 86 */ 87 timer_cfg.direct_mode = 1; 88 timer_cfg.apic_vector = stimer0_vector; 89 hv_enable_stimer0_percpu_irq(stimer0_irq); 90 } else { 91 /* 92 * When it expires, the timer will generate a VMbus message, 93 * to be handled by the normal VMbus interrupt handler. 94 */ 95 timer_cfg.direct_mode = 0; 96 timer_cfg.sintx = stimer0_message_sint; 97 } 98 hv_init_timer_config(0, timer_cfg.as_uint64); 99 return 0; 100 } 101 102 /* 103 * hv_stimer_init - Per-cpu initialization of the clockevent 104 */ 105 void hv_stimer_init(unsigned int cpu) 106 { 107 struct clock_event_device *ce; 108 109 /* 110 * Synthetic timers are always available except on old versions of 111 * Hyper-V on x86. In that case, just return as Linux will use a 112 * clocksource based on emulated PIT or LAPIC timer hardware. 113 */ 114 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE)) 115 return; 116 117 ce = per_cpu_ptr(hv_clock_event, cpu); 118 ce->name = "Hyper-V clockevent"; 119 ce->features = CLOCK_EVT_FEAT_ONESHOT; 120 ce->cpumask = cpumask_of(cpu); 121 ce->rating = 1000; 122 ce->set_state_shutdown = hv_ce_shutdown; 123 ce->set_state_oneshot = hv_ce_set_oneshot; 124 ce->set_next_event = hv_ce_set_next_event; 125 126 clockevents_config_and_register(ce, 127 HV_CLOCK_HZ, 128 HV_MIN_DELTA_TICKS, 129 HV_MAX_MAX_DELTA_TICKS); 130 } 131 EXPORT_SYMBOL_GPL(hv_stimer_init); 132 133 /* 134 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent 135 */ 136 void hv_stimer_cleanup(unsigned int cpu) 137 { 138 struct clock_event_device *ce; 139 140 /* Turn off clockevent device */ 141 if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) { 142 ce = per_cpu_ptr(hv_clock_event, cpu); 143 hv_ce_shutdown(ce); 144 } 145 } 146 EXPORT_SYMBOL_GPL(hv_stimer_cleanup); 147 148 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */ 149 int hv_stimer_alloc(int sint) 150 { 151 int ret; 152 153 hv_clock_event = alloc_percpu(struct clock_event_device); 154 if (!hv_clock_event) 155 return -ENOMEM; 156 157 direct_mode_enabled = ms_hyperv.misc_features & 158 HV_STIMER_DIRECT_MODE_AVAILABLE; 159 if (direct_mode_enabled) { 160 ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector, 161 hv_stimer0_isr); 162 if (ret) { 163 free_percpu(hv_clock_event); 164 hv_clock_event = NULL; 165 return ret; 166 } 167 } 168 169 stimer0_message_sint = sint; 170 return 0; 171 } 172 EXPORT_SYMBOL_GPL(hv_stimer_alloc); 173 174 /* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */ 175 void hv_stimer_free(void) 176 { 177 if (direct_mode_enabled && (stimer0_irq != 0)) { 178 hv_remove_stimer0_irq(stimer0_irq); 179 stimer0_irq = 0; 180 } 181 free_percpu(hv_clock_event); 182 hv_clock_event = NULL; 183 } 184 EXPORT_SYMBOL_GPL(hv_stimer_free); 185 186 /* 187 * Do a global cleanup of clockevents for the cases of kexec and 188 * vmbus exit 189 */ 190 void hv_stimer_global_cleanup(void) 191 { 192 int cpu; 193 struct clock_event_device *ce; 194 195 if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) { 196 for_each_present_cpu(cpu) { 197 ce = per_cpu_ptr(hv_clock_event, cpu); 198 clockevents_unbind_device(ce, cpu); 199 } 200 } 201 hv_stimer_free(); 202 } 203 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup); 204 205 /* 206 * Code and definitions for the Hyper-V clocksources. Two 207 * clocksources are defined: one that reads the Hyper-V defined MSR, and 208 * the other that uses the TSC reference page feature as defined in the 209 * TLFS. The MSR version is for compatibility with old versions of 210 * Hyper-V and 32-bit x86. The TSC reference page version is preferred. 211 */ 212 213 struct clocksource *hyperv_cs; 214 EXPORT_SYMBOL_GPL(hyperv_cs); 215 216 static struct ms_hyperv_tsc_page tsc_pg __aligned(PAGE_SIZE); 217 218 struct ms_hyperv_tsc_page *hv_get_tsc_page(void) 219 { 220 return &tsc_pg; 221 } 222 EXPORT_SYMBOL_GPL(hv_get_tsc_page); 223 224 static u64 notrace read_hv_clock_tsc(struct clocksource *arg) 225 { 226 u64 current_tick = hv_read_tsc_page(&tsc_pg); 227 228 if (current_tick == U64_MAX) 229 hv_get_time_ref_count(current_tick); 230 231 return current_tick; 232 } 233 234 static u64 read_hv_sched_clock_tsc(void) 235 { 236 return read_hv_clock_tsc(NULL) - hv_sched_clock_offset; 237 } 238 239 static struct clocksource hyperv_cs_tsc = { 240 .name = "hyperv_clocksource_tsc_page", 241 .rating = 400, 242 .read = read_hv_clock_tsc, 243 .mask = CLOCKSOURCE_MASK(64), 244 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 245 }; 246 247 static u64 notrace read_hv_clock_msr(struct clocksource *arg) 248 { 249 u64 current_tick; 250 /* 251 * Read the partition counter to get the current tick count. This count 252 * is set to 0 when the partition is created and is incremented in 253 * 100 nanosecond units. 254 */ 255 hv_get_time_ref_count(current_tick); 256 return current_tick; 257 } 258 259 static u64 read_hv_sched_clock_msr(void) 260 { 261 return read_hv_clock_msr(NULL) - hv_sched_clock_offset; 262 } 263 264 static struct clocksource hyperv_cs_msr = { 265 .name = "hyperv_clocksource_msr", 266 .rating = 400, 267 .read = read_hv_clock_msr, 268 .mask = CLOCKSOURCE_MASK(64), 269 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 270 }; 271 272 static bool __init hv_init_tsc_clocksource(void) 273 { 274 u64 tsc_msr; 275 phys_addr_t phys_addr; 276 277 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE)) 278 return false; 279 280 hyperv_cs = &hyperv_cs_tsc; 281 phys_addr = virt_to_phys(&tsc_pg); 282 283 /* 284 * The Hyper-V TLFS specifies to preserve the value of reserved 285 * bits in registers. So read the existing value, preserve the 286 * low order 12 bits, and add in the guest physical address 287 * (which already has at least the low 12 bits set to zero since 288 * it is page aligned). Also set the "enable" bit, which is bit 0. 289 */ 290 hv_get_reference_tsc(tsc_msr); 291 tsc_msr &= GENMASK_ULL(11, 0); 292 tsc_msr = tsc_msr | 0x1 | (u64)phys_addr; 293 hv_set_reference_tsc(tsc_msr); 294 295 hv_set_clocksource_vdso(hyperv_cs_tsc); 296 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100); 297 298 hv_sched_clock_offset = hyperv_cs->read(hyperv_cs); 299 hv_setup_sched_clock(read_hv_sched_clock_tsc); 300 301 return true; 302 } 303 304 void __init hv_init_clocksource(void) 305 { 306 /* 307 * Try to set up the TSC page clocksource. If it succeeds, we're 308 * done. Otherwise, set up the MSR clocksoruce. At least one of 309 * these will always be available except on very old versions of 310 * Hyper-V on x86. In that case we won't have a Hyper-V 311 * clocksource, but Linux will still run with a clocksource based 312 * on the emulated PIT or LAPIC timer. 313 */ 314 if (hv_init_tsc_clocksource()) 315 return; 316 317 if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)) 318 return; 319 320 hyperv_cs = &hyperv_cs_msr; 321 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100); 322 323 hv_sched_clock_offset = hyperv_cs->read(hyperv_cs); 324 hv_setup_sched_clock(read_hv_sched_clock_msr); 325 } 326 EXPORT_SYMBOL_GPL(hv_init_clocksource); 327