1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28 
29 #define EXYNOS4_MCTREG(x)		(x)
30 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
43 
44 #define MCT_L_TCNTB_OFFSET		(0x00)
45 #define MCT_L_ICNTB_OFFSET		(0x08)
46 #define MCT_L_TCON_OFFSET		(0x20)
47 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
48 #define MCT_L_INT_ENB_OFFSET		(0x34)
49 #define MCT_L_WSTAT_OFFSET		(0x40)
50 #define MCT_G_TCON_START		(1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
54 #define MCT_L_TCON_INT_START		(1 << 1)
55 #define MCT_L_TCON_TIMER_START		(1 << 0)
56 
57 #define TICK_BASE_CNT	1
58 
59 enum {
60 	MCT_INT_SPI,
61 	MCT_INT_PPI
62 };
63 
64 enum {
65 	MCT_G0_IRQ,
66 	MCT_G1_IRQ,
67 	MCT_G2_IRQ,
68 	MCT_G3_IRQ,
69 	MCT_L0_IRQ,
70 	MCT_L1_IRQ,
71 	MCT_L2_IRQ,
72 	MCT_L3_IRQ,
73 	MCT_L4_IRQ,
74 	MCT_L5_IRQ,
75 	MCT_L6_IRQ,
76 	MCT_L7_IRQ,
77 	MCT_NR_IRQS,
78 };
79 
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84 
85 struct mct_clock_event_device {
86 	struct clock_event_device evt;
87 	unsigned long base;
88 	char name[10];
89 };
90 
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93 	unsigned long stat_addr;
94 	u32 mask;
95 	u32 i;
96 
97 	__raw_writel(value, reg_base + offset);
98 
99 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100 		stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 		switch (offset & EXYNOS4_MCT_L_MASK) {
102 		case MCT_L_TCON_OFFSET:
103 			mask = 1 << 3;		/* L_TCON write status */
104 			break;
105 		case MCT_L_ICNTB_OFFSET:
106 			mask = 1 << 1;		/* L_ICNTB write status */
107 			break;
108 		case MCT_L_TCNTB_OFFSET:
109 			mask = 1 << 0;		/* L_TCNTB write status */
110 			break;
111 		default:
112 			return;
113 		}
114 	} else {
115 		switch (offset) {
116 		case EXYNOS4_MCT_G_TCON:
117 			stat_addr = EXYNOS4_MCT_G_WSTAT;
118 			mask = 1 << 16;		/* G_TCON write status */
119 			break;
120 		case EXYNOS4_MCT_G_COMP0_L:
121 			stat_addr = EXYNOS4_MCT_G_WSTAT;
122 			mask = 1 << 0;		/* G_COMP0_L write status */
123 			break;
124 		case EXYNOS4_MCT_G_COMP0_U:
125 			stat_addr = EXYNOS4_MCT_G_WSTAT;
126 			mask = 1 << 1;		/* G_COMP0_U write status */
127 			break;
128 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129 			stat_addr = EXYNOS4_MCT_G_WSTAT;
130 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
131 			break;
132 		case EXYNOS4_MCT_G_CNT_L:
133 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 			mask = 1 << 0;		/* G_CNT_L write status */
135 			break;
136 		case EXYNOS4_MCT_G_CNT_U:
137 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 			mask = 1 << 1;		/* G_CNT_U write status */
139 			break;
140 		default:
141 			return;
142 		}
143 	}
144 
145 	/* Wait maximum 1 ms until written values are applied */
146 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147 		if (__raw_readl(reg_base + stat_addr) & mask) {
148 			__raw_writel(mask, reg_base + stat_addr);
149 			return;
150 		}
151 
152 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154 
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158 	u32 reg;
159 
160 	reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
161 	reg |= MCT_G_TCON_START;
162 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164 
165 static cycle_t exynos4_frc_read(struct clocksource *cs)
166 {
167 	unsigned int lo, hi;
168 	u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
169 
170 	do {
171 		hi = hi2;
172 		lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
173 		hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
174 	} while (hi != hi2);
175 
176 	return ((cycle_t)hi << 32) | lo;
177 }
178 
179 static void exynos4_frc_resume(struct clocksource *cs)
180 {
181 	exynos4_mct_frc_start();
182 }
183 
184 struct clocksource mct_frc = {
185 	.name		= "mct-frc",
186 	.rating		= 400,
187 	.read		= exynos4_frc_read,
188 	.mask		= CLOCKSOURCE_MASK(64),
189 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
190 	.resume		= exynos4_frc_resume,
191 };
192 
193 static u64 notrace exynos4_read_sched_clock(void)
194 {
195 	return exynos4_frc_read(&mct_frc);
196 }
197 
198 static void __init exynos4_clocksource_init(void)
199 {
200 	exynos4_mct_frc_start();
201 
202 	if (clocksource_register_hz(&mct_frc, clk_rate))
203 		panic("%s: can't register clocksource\n", mct_frc.name);
204 
205 	sched_clock_register(exynos4_read_sched_clock, 64, clk_rate);
206 }
207 
208 static void exynos4_mct_comp0_stop(void)
209 {
210 	unsigned int tcon;
211 
212 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
213 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
214 
215 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
216 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
217 }
218 
219 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
220 				    unsigned long cycles)
221 {
222 	unsigned int tcon;
223 	cycle_t comp_cycle;
224 
225 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
226 
227 	if (mode == CLOCK_EVT_MODE_PERIODIC) {
228 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
229 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
230 	}
231 
232 	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
233 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
234 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
235 
236 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
237 
238 	tcon |= MCT_G_TCON_COMP0_ENABLE;
239 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
240 }
241 
242 static int exynos4_comp_set_next_event(unsigned long cycles,
243 				       struct clock_event_device *evt)
244 {
245 	exynos4_mct_comp0_start(evt->mode, cycles);
246 
247 	return 0;
248 }
249 
250 static void exynos4_comp_set_mode(enum clock_event_mode mode,
251 				  struct clock_event_device *evt)
252 {
253 	unsigned long cycles_per_jiffy;
254 	exynos4_mct_comp0_stop();
255 
256 	switch (mode) {
257 	case CLOCK_EVT_MODE_PERIODIC:
258 		cycles_per_jiffy =
259 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
260 		exynos4_mct_comp0_start(mode, cycles_per_jiffy);
261 		break;
262 
263 	case CLOCK_EVT_MODE_ONESHOT:
264 	case CLOCK_EVT_MODE_UNUSED:
265 	case CLOCK_EVT_MODE_SHUTDOWN:
266 	case CLOCK_EVT_MODE_RESUME:
267 		break;
268 	}
269 }
270 
271 static struct clock_event_device mct_comp_device = {
272 	.name		= "mct-comp",
273 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
274 	.rating		= 250,
275 	.set_next_event	= exynos4_comp_set_next_event,
276 	.set_mode	= exynos4_comp_set_mode,
277 };
278 
279 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
280 {
281 	struct clock_event_device *evt = dev_id;
282 
283 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
284 
285 	evt->event_handler(evt);
286 
287 	return IRQ_HANDLED;
288 }
289 
290 static struct irqaction mct_comp_event_irq = {
291 	.name		= "mct_comp_irq",
292 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
293 	.handler	= exynos4_mct_comp_isr,
294 	.dev_id		= &mct_comp_device,
295 };
296 
297 static void exynos4_clockevent_init(void)
298 {
299 	mct_comp_device.cpumask = cpumask_of(0);
300 	clockevents_config_and_register(&mct_comp_device, clk_rate,
301 					0xf, 0xffffffff);
302 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
303 }
304 
305 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
306 
307 /* Clock event handling */
308 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
309 {
310 	unsigned long tmp;
311 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
312 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
313 
314 	tmp = __raw_readl(reg_base + offset);
315 	if (tmp & mask) {
316 		tmp &= ~mask;
317 		exynos4_mct_write(tmp, offset);
318 	}
319 }
320 
321 static void exynos4_mct_tick_start(unsigned long cycles,
322 				   struct mct_clock_event_device *mevt)
323 {
324 	unsigned long tmp;
325 
326 	exynos4_mct_tick_stop(mevt);
327 
328 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
329 
330 	/* update interrupt count buffer */
331 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
332 
333 	/* enable MCT tick interrupt */
334 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
335 
336 	tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
337 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
338 	       MCT_L_TCON_INTERVAL_MODE;
339 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
340 }
341 
342 static int exynos4_tick_set_next_event(unsigned long cycles,
343 				       struct clock_event_device *evt)
344 {
345 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
346 
347 	exynos4_mct_tick_start(cycles, mevt);
348 
349 	return 0;
350 }
351 
352 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
353 					 struct clock_event_device *evt)
354 {
355 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
356 	unsigned long cycles_per_jiffy;
357 
358 	exynos4_mct_tick_stop(mevt);
359 
360 	switch (mode) {
361 	case CLOCK_EVT_MODE_PERIODIC:
362 		cycles_per_jiffy =
363 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
364 		exynos4_mct_tick_start(cycles_per_jiffy, mevt);
365 		break;
366 
367 	case CLOCK_EVT_MODE_ONESHOT:
368 	case CLOCK_EVT_MODE_UNUSED:
369 	case CLOCK_EVT_MODE_SHUTDOWN:
370 	case CLOCK_EVT_MODE_RESUME:
371 		break;
372 	}
373 }
374 
375 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
376 {
377 	struct clock_event_device *evt = &mevt->evt;
378 
379 	/*
380 	 * This is for supporting oneshot mode.
381 	 * Mct would generate interrupt periodically
382 	 * without explicit stopping.
383 	 */
384 	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
385 		exynos4_mct_tick_stop(mevt);
386 
387 	/* Clear the MCT tick interrupt */
388 	if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
389 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
390 		return 1;
391 	} else {
392 		return 0;
393 	}
394 }
395 
396 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
397 {
398 	struct mct_clock_event_device *mevt = dev_id;
399 	struct clock_event_device *evt = &mevt->evt;
400 
401 	exynos4_mct_tick_clear(mevt);
402 
403 	evt->event_handler(evt);
404 
405 	return IRQ_HANDLED;
406 }
407 
408 static int exynos4_local_timer_setup(struct clock_event_device *evt)
409 {
410 	struct mct_clock_event_device *mevt;
411 	unsigned int cpu = smp_processor_id();
412 
413 	mevt = container_of(evt, struct mct_clock_event_device, evt);
414 
415 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
416 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
417 
418 	evt->name = mevt->name;
419 	evt->cpumask = cpumask_of(cpu);
420 	evt->set_next_event = exynos4_tick_set_next_event;
421 	evt->set_mode = exynos4_tick_set_mode;
422 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
423 	evt->rating = 450;
424 
425 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
426 
427 	if (mct_int_type == MCT_INT_SPI) {
428 		evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
429 		if (request_irq(evt->irq, exynos4_mct_tick_isr,
430 				IRQF_TIMER | IRQF_NOBALANCING,
431 				evt->name, mevt)) {
432 			pr_err("exynos-mct: cannot register IRQ %d\n",
433 				evt->irq);
434 			return -EIO;
435 		}
436 		irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
437 	} else {
438 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
439 	}
440 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
441 					0xf, 0x7fffffff);
442 
443 	return 0;
444 }
445 
446 static void exynos4_local_timer_stop(struct clock_event_device *evt)
447 {
448 	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
449 	if (mct_int_type == MCT_INT_SPI)
450 		free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
451 	else
452 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
453 }
454 
455 static int exynos4_mct_cpu_notify(struct notifier_block *self,
456 					   unsigned long action, void *hcpu)
457 {
458 	struct mct_clock_event_device *mevt;
459 
460 	/*
461 	 * Grab cpu pointer in each case to avoid spurious
462 	 * preemptible warnings
463 	 */
464 	switch (action & ~CPU_TASKS_FROZEN) {
465 	case CPU_STARTING:
466 		mevt = this_cpu_ptr(&percpu_mct_tick);
467 		exynos4_local_timer_setup(&mevt->evt);
468 		break;
469 	case CPU_DYING:
470 		mevt = this_cpu_ptr(&percpu_mct_tick);
471 		exynos4_local_timer_stop(&mevt->evt);
472 		break;
473 	}
474 
475 	return NOTIFY_OK;
476 }
477 
478 static struct notifier_block exynos4_mct_cpu_nb = {
479 	.notifier_call = exynos4_mct_cpu_notify,
480 };
481 
482 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
483 {
484 	int err;
485 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
486 	struct clk *mct_clk, *tick_clk;
487 
488 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
489 				clk_get(NULL, "fin_pll");
490 	if (IS_ERR(tick_clk))
491 		panic("%s: unable to determine tick clock rate\n", __func__);
492 	clk_rate = clk_get_rate(tick_clk);
493 
494 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
495 	if (IS_ERR(mct_clk))
496 		panic("%s: unable to retrieve mct clock instance\n", __func__);
497 	clk_prepare_enable(mct_clk);
498 
499 	reg_base = base;
500 	if (!reg_base)
501 		panic("%s: unable to ioremap mct address space\n", __func__);
502 
503 	if (mct_int_type == MCT_INT_PPI) {
504 
505 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
506 					 exynos4_mct_tick_isr, "MCT",
507 					 &percpu_mct_tick);
508 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
509 		     mct_irqs[MCT_L0_IRQ], err);
510 	} else {
511 		irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
512 	}
513 
514 	err = register_cpu_notifier(&exynos4_mct_cpu_nb);
515 	if (err)
516 		goto out_irq;
517 
518 	/* Immediately configure the timer on the boot CPU */
519 	exynos4_local_timer_setup(&mevt->evt);
520 	return;
521 
522 out_irq:
523 	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
524 }
525 
526 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
527 {
528 	mct_irqs[MCT_G0_IRQ] = irq_g0;
529 	mct_irqs[MCT_L0_IRQ] = irq_l0;
530 	mct_irqs[MCT_L1_IRQ] = irq_l1;
531 	mct_int_type = MCT_INT_SPI;
532 
533 	exynos4_timer_resources(NULL, base);
534 	exynos4_clocksource_init();
535 	exynos4_clockevent_init();
536 }
537 
538 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
539 {
540 	u32 nr_irqs, i;
541 
542 	mct_int_type = int_type;
543 
544 	/* This driver uses only one global timer interrupt */
545 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
546 
547 	/*
548 	 * Find out the number of local irqs specified. The local
549 	 * timer irqs are specified after the four global timer
550 	 * irqs are specified.
551 	 */
552 #ifdef CONFIG_OF
553 	nr_irqs = of_irq_count(np);
554 #else
555 	nr_irqs = 0;
556 #endif
557 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
558 		mct_irqs[i] = irq_of_parse_and_map(np, i);
559 
560 	exynos4_timer_resources(np, of_iomap(np, 0));
561 	exynos4_clocksource_init();
562 	exynos4_clockevent_init();
563 }
564 
565 
566 static void __init mct_init_spi(struct device_node *np)
567 {
568 	return mct_init_dt(np, MCT_INT_SPI);
569 }
570 
571 static void __init mct_init_ppi(struct device_node *np)
572 {
573 	return mct_init_dt(np, MCT_INT_PPI);
574 }
575 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
576 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
577