1 // SPDX-License-Identifier: GPL-2.0-only 2 /* linux/arch/arm/mach-exynos4/mct.c 3 * 4 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com 6 * 7 * EXYNOS4 MCT(Multi-Core Timer) support 8 */ 9 10 #include <linux/interrupt.h> 11 #include <linux/irq.h> 12 #include <linux/err.h> 13 #include <linux/clk.h> 14 #include <linux/clockchips.h> 15 #include <linux/cpu.h> 16 #include <linux/delay.h> 17 #include <linux/percpu.h> 18 #include <linux/of.h> 19 #include <linux/of_irq.h> 20 #include <linux/of_address.h> 21 #include <linux/clocksource.h> 22 #include <linux/sched_clock.h> 23 24 #define EXYNOS4_MCTREG(x) (x) 25 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100) 26 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104) 27 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110) 28 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200) 29 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204) 30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208) 31 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240) 32 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244) 33 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248) 34 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C) 35 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300) 36 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x)) 37 #define EXYNOS4_MCT_L_MASK (0xffffff00) 38 39 #define MCT_L_TCNTB_OFFSET (0x00) 40 #define MCT_L_ICNTB_OFFSET (0x08) 41 #define MCT_L_TCON_OFFSET (0x20) 42 #define MCT_L_INT_CSTAT_OFFSET (0x30) 43 #define MCT_L_INT_ENB_OFFSET (0x34) 44 #define MCT_L_WSTAT_OFFSET (0x40) 45 #define MCT_G_TCON_START (1 << 8) 46 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1) 47 #define MCT_G_TCON_COMP0_ENABLE (1 << 0) 48 #define MCT_L_TCON_INTERVAL_MODE (1 << 2) 49 #define MCT_L_TCON_INT_START (1 << 1) 50 #define MCT_L_TCON_TIMER_START (1 << 0) 51 52 #define TICK_BASE_CNT 1 53 54 enum { 55 MCT_INT_SPI, 56 MCT_INT_PPI 57 }; 58 59 enum { 60 MCT_G0_IRQ, 61 MCT_G1_IRQ, 62 MCT_G2_IRQ, 63 MCT_G3_IRQ, 64 MCT_L0_IRQ, 65 MCT_L1_IRQ, 66 MCT_L2_IRQ, 67 MCT_L3_IRQ, 68 MCT_L4_IRQ, 69 MCT_L5_IRQ, 70 MCT_L6_IRQ, 71 MCT_L7_IRQ, 72 MCT_NR_IRQS, 73 }; 74 75 static void __iomem *reg_base; 76 static unsigned long clk_rate; 77 static unsigned int mct_int_type; 78 static int mct_irqs[MCT_NR_IRQS]; 79 80 struct mct_clock_event_device { 81 struct clock_event_device evt; 82 unsigned long base; 83 char name[10]; 84 }; 85 86 static void exynos4_mct_write(unsigned int value, unsigned long offset) 87 { 88 unsigned long stat_addr; 89 u32 mask; 90 u32 i; 91 92 writel_relaxed(value, reg_base + offset); 93 94 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) { 95 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET; 96 switch (offset & ~EXYNOS4_MCT_L_MASK) { 97 case MCT_L_TCON_OFFSET: 98 mask = 1 << 3; /* L_TCON write status */ 99 break; 100 case MCT_L_ICNTB_OFFSET: 101 mask = 1 << 1; /* L_ICNTB write status */ 102 break; 103 case MCT_L_TCNTB_OFFSET: 104 mask = 1 << 0; /* L_TCNTB write status */ 105 break; 106 default: 107 return; 108 } 109 } else { 110 switch (offset) { 111 case EXYNOS4_MCT_G_TCON: 112 stat_addr = EXYNOS4_MCT_G_WSTAT; 113 mask = 1 << 16; /* G_TCON write status */ 114 break; 115 case EXYNOS4_MCT_G_COMP0_L: 116 stat_addr = EXYNOS4_MCT_G_WSTAT; 117 mask = 1 << 0; /* G_COMP0_L write status */ 118 break; 119 case EXYNOS4_MCT_G_COMP0_U: 120 stat_addr = EXYNOS4_MCT_G_WSTAT; 121 mask = 1 << 1; /* G_COMP0_U write status */ 122 break; 123 case EXYNOS4_MCT_G_COMP0_ADD_INCR: 124 stat_addr = EXYNOS4_MCT_G_WSTAT; 125 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */ 126 break; 127 case EXYNOS4_MCT_G_CNT_L: 128 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; 129 mask = 1 << 0; /* G_CNT_L write status */ 130 break; 131 case EXYNOS4_MCT_G_CNT_U: 132 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; 133 mask = 1 << 1; /* G_CNT_U write status */ 134 break; 135 default: 136 return; 137 } 138 } 139 140 /* Wait maximum 1 ms until written values are applied */ 141 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++) 142 if (readl_relaxed(reg_base + stat_addr) & mask) { 143 writel_relaxed(mask, reg_base + stat_addr); 144 return; 145 } 146 147 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset); 148 } 149 150 /* Clocksource handling */ 151 static void exynos4_mct_frc_start(void) 152 { 153 u32 reg; 154 155 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); 156 reg |= MCT_G_TCON_START; 157 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON); 158 } 159 160 /** 161 * exynos4_read_count_64 - Read all 64-bits of the global counter 162 * 163 * This will read all 64-bits of the global counter taking care to make sure 164 * that the upper and lower half match. Note that reading the MCT can be quite 165 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half 166 * only) version when possible. 167 * 168 * Returns the number of cycles in the global counter. 169 */ 170 static u64 exynos4_read_count_64(void) 171 { 172 unsigned int lo, hi; 173 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); 174 175 do { 176 hi = hi2; 177 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); 178 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); 179 } while (hi != hi2); 180 181 return ((u64)hi << 32) | lo; 182 } 183 184 /** 185 * exynos4_read_count_32 - Read the lower 32-bits of the global counter 186 * 187 * This will read just the lower 32-bits of the global counter. This is marked 188 * as notrace so it can be used by the scheduler clock. 189 * 190 * Returns the number of cycles in the global counter (lower 32 bits). 191 */ 192 static u32 notrace exynos4_read_count_32(void) 193 { 194 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); 195 } 196 197 static u64 exynos4_frc_read(struct clocksource *cs) 198 { 199 return exynos4_read_count_32(); 200 } 201 202 static void exynos4_frc_resume(struct clocksource *cs) 203 { 204 exynos4_mct_frc_start(); 205 } 206 207 static struct clocksource mct_frc = { 208 .name = "mct-frc", 209 .rating = 450, /* use value higher than ARM arch timer */ 210 .read = exynos4_frc_read, 211 .mask = CLOCKSOURCE_MASK(32), 212 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 213 .resume = exynos4_frc_resume, 214 }; 215 216 static u64 notrace exynos4_read_sched_clock(void) 217 { 218 return exynos4_read_count_32(); 219 } 220 221 #if defined(CONFIG_ARM) 222 static struct delay_timer exynos4_delay_timer; 223 224 static cycles_t exynos4_read_current_timer(void) 225 { 226 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32), 227 "cycles_t needs to move to 32-bit for ARM64 usage"); 228 return exynos4_read_count_32(); 229 } 230 #endif 231 232 static int __init exynos4_clocksource_init(void) 233 { 234 exynos4_mct_frc_start(); 235 236 #if defined(CONFIG_ARM) 237 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer; 238 exynos4_delay_timer.freq = clk_rate; 239 register_current_timer_delay(&exynos4_delay_timer); 240 #endif 241 242 if (clocksource_register_hz(&mct_frc, clk_rate)) 243 panic("%s: can't register clocksource\n", mct_frc.name); 244 245 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate); 246 247 return 0; 248 } 249 250 static void exynos4_mct_comp0_stop(void) 251 { 252 unsigned int tcon; 253 254 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); 255 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC); 256 257 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON); 258 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB); 259 } 260 261 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles) 262 { 263 unsigned int tcon; 264 u64 comp_cycle; 265 266 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); 267 268 if (periodic) { 269 tcon |= MCT_G_TCON_COMP0_AUTO_INC; 270 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR); 271 } 272 273 comp_cycle = exynos4_read_count_64() + cycles; 274 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L); 275 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U); 276 277 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB); 278 279 tcon |= MCT_G_TCON_COMP0_ENABLE; 280 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON); 281 } 282 283 static int exynos4_comp_set_next_event(unsigned long cycles, 284 struct clock_event_device *evt) 285 { 286 exynos4_mct_comp0_start(false, cycles); 287 288 return 0; 289 } 290 291 static int mct_set_state_shutdown(struct clock_event_device *evt) 292 { 293 exynos4_mct_comp0_stop(); 294 return 0; 295 } 296 297 static int mct_set_state_periodic(struct clock_event_device *evt) 298 { 299 unsigned long cycles_per_jiffy; 300 301 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) 302 >> evt->shift); 303 exynos4_mct_comp0_stop(); 304 exynos4_mct_comp0_start(true, cycles_per_jiffy); 305 return 0; 306 } 307 308 static struct clock_event_device mct_comp_device = { 309 .name = "mct-comp", 310 .features = CLOCK_EVT_FEAT_PERIODIC | 311 CLOCK_EVT_FEAT_ONESHOT, 312 .rating = 250, 313 .set_next_event = exynos4_comp_set_next_event, 314 .set_state_periodic = mct_set_state_periodic, 315 .set_state_shutdown = mct_set_state_shutdown, 316 .set_state_oneshot = mct_set_state_shutdown, 317 .set_state_oneshot_stopped = mct_set_state_shutdown, 318 .tick_resume = mct_set_state_shutdown, 319 }; 320 321 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id) 322 { 323 struct clock_event_device *evt = dev_id; 324 325 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT); 326 327 evt->event_handler(evt); 328 329 return IRQ_HANDLED; 330 } 331 332 static struct irqaction mct_comp_event_irq = { 333 .name = "mct_comp_irq", 334 .flags = IRQF_TIMER | IRQF_IRQPOLL, 335 .handler = exynos4_mct_comp_isr, 336 .dev_id = &mct_comp_device, 337 }; 338 339 static int exynos4_clockevent_init(void) 340 { 341 mct_comp_device.cpumask = cpumask_of(0); 342 clockevents_config_and_register(&mct_comp_device, clk_rate, 343 0xf, 0xffffffff); 344 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq); 345 346 return 0; 347 } 348 349 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick); 350 351 /* Clock event handling */ 352 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt) 353 { 354 unsigned long tmp; 355 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START; 356 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET; 357 358 tmp = readl_relaxed(reg_base + offset); 359 if (tmp & mask) { 360 tmp &= ~mask; 361 exynos4_mct_write(tmp, offset); 362 } 363 } 364 365 static void exynos4_mct_tick_start(unsigned long cycles, 366 struct mct_clock_event_device *mevt) 367 { 368 unsigned long tmp; 369 370 exynos4_mct_tick_stop(mevt); 371 372 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */ 373 374 /* update interrupt count buffer */ 375 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET); 376 377 /* enable MCT tick interrupt */ 378 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET); 379 380 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET); 381 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START | 382 MCT_L_TCON_INTERVAL_MODE; 383 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET); 384 } 385 386 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt) 387 { 388 /* Clear the MCT tick interrupt */ 389 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) 390 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); 391 } 392 393 static int exynos4_tick_set_next_event(unsigned long cycles, 394 struct clock_event_device *evt) 395 { 396 struct mct_clock_event_device *mevt; 397 398 mevt = container_of(evt, struct mct_clock_event_device, evt); 399 exynos4_mct_tick_start(cycles, mevt); 400 return 0; 401 } 402 403 static int set_state_shutdown(struct clock_event_device *evt) 404 { 405 struct mct_clock_event_device *mevt; 406 407 mevt = container_of(evt, struct mct_clock_event_device, evt); 408 exynos4_mct_tick_stop(mevt); 409 exynos4_mct_tick_clear(mevt); 410 return 0; 411 } 412 413 static int set_state_periodic(struct clock_event_device *evt) 414 { 415 struct mct_clock_event_device *mevt; 416 unsigned long cycles_per_jiffy; 417 418 mevt = container_of(evt, struct mct_clock_event_device, evt); 419 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) 420 >> evt->shift); 421 exynos4_mct_tick_stop(mevt); 422 exynos4_mct_tick_start(cycles_per_jiffy, mevt); 423 return 0; 424 } 425 426 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id) 427 { 428 struct mct_clock_event_device *mevt = dev_id; 429 struct clock_event_device *evt = &mevt->evt; 430 431 /* 432 * This is for supporting oneshot mode. 433 * Mct would generate interrupt periodically 434 * without explicit stopping. 435 */ 436 if (!clockevent_state_periodic(&mevt->evt)) 437 exynos4_mct_tick_stop(mevt); 438 439 exynos4_mct_tick_clear(mevt); 440 441 evt->event_handler(evt); 442 443 return IRQ_HANDLED; 444 } 445 446 static int exynos4_mct_starting_cpu(unsigned int cpu) 447 { 448 struct mct_clock_event_device *mevt = 449 per_cpu_ptr(&percpu_mct_tick, cpu); 450 struct clock_event_device *evt = &mevt->evt; 451 452 mevt->base = EXYNOS4_MCT_L_BASE(cpu); 453 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu); 454 455 evt->name = mevt->name; 456 evt->cpumask = cpumask_of(cpu); 457 evt->set_next_event = exynos4_tick_set_next_event; 458 evt->set_state_periodic = set_state_periodic; 459 evt->set_state_shutdown = set_state_shutdown; 460 evt->set_state_oneshot = set_state_shutdown; 461 evt->set_state_oneshot_stopped = set_state_shutdown; 462 evt->tick_resume = set_state_shutdown; 463 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; 464 evt->rating = 500; /* use value higher than ARM arch timer */ 465 466 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET); 467 468 if (mct_int_type == MCT_INT_SPI) { 469 470 if (evt->irq == -1) 471 return -EIO; 472 473 irq_force_affinity(evt->irq, cpumask_of(cpu)); 474 enable_irq(evt->irq); 475 } else { 476 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0); 477 } 478 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1), 479 0xf, 0x7fffffff); 480 481 return 0; 482 } 483 484 static int exynos4_mct_dying_cpu(unsigned int cpu) 485 { 486 struct mct_clock_event_device *mevt = 487 per_cpu_ptr(&percpu_mct_tick, cpu); 488 struct clock_event_device *evt = &mevt->evt; 489 490 evt->set_state_shutdown(evt); 491 if (mct_int_type == MCT_INT_SPI) { 492 if (evt->irq != -1) 493 disable_irq_nosync(evt->irq); 494 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); 495 } else { 496 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]); 497 } 498 return 0; 499 } 500 501 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base) 502 { 503 int err, cpu; 504 struct clk *mct_clk, *tick_clk; 505 506 tick_clk = of_clk_get_by_name(np, "fin_pll"); 507 if (IS_ERR(tick_clk)) 508 panic("%s: unable to determine tick clock rate\n", __func__); 509 clk_rate = clk_get_rate(tick_clk); 510 511 mct_clk = of_clk_get_by_name(np, "mct"); 512 if (IS_ERR(mct_clk)) 513 panic("%s: unable to retrieve mct clock instance\n", __func__); 514 clk_prepare_enable(mct_clk); 515 516 reg_base = base; 517 if (!reg_base) 518 panic("%s: unable to ioremap mct address space\n", __func__); 519 520 if (mct_int_type == MCT_INT_PPI) { 521 522 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ], 523 exynos4_mct_tick_isr, "MCT", 524 &percpu_mct_tick); 525 WARN(err, "MCT: can't request IRQ %d (%d)\n", 526 mct_irqs[MCT_L0_IRQ], err); 527 } else { 528 for_each_possible_cpu(cpu) { 529 int mct_irq = mct_irqs[MCT_L0_IRQ + cpu]; 530 struct mct_clock_event_device *pcpu_mevt = 531 per_cpu_ptr(&percpu_mct_tick, cpu); 532 533 pcpu_mevt->evt.irq = -1; 534 535 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN); 536 if (request_irq(mct_irq, 537 exynos4_mct_tick_isr, 538 IRQF_TIMER | IRQF_NOBALANCING, 539 pcpu_mevt->name, pcpu_mevt)) { 540 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n", 541 cpu); 542 543 continue; 544 } 545 pcpu_mevt->evt.irq = mct_irq; 546 } 547 } 548 549 /* Install hotplug callbacks which configure the timer on this CPU */ 550 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING, 551 "clockevents/exynos4/mct_timer:starting", 552 exynos4_mct_starting_cpu, 553 exynos4_mct_dying_cpu); 554 if (err) 555 goto out_irq; 556 557 return 0; 558 559 out_irq: 560 if (mct_int_type == MCT_INT_PPI) { 561 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick); 562 } else { 563 for_each_possible_cpu(cpu) { 564 struct mct_clock_event_device *pcpu_mevt = 565 per_cpu_ptr(&percpu_mct_tick, cpu); 566 567 if (pcpu_mevt->evt.irq != -1) { 568 free_irq(pcpu_mevt->evt.irq, pcpu_mevt); 569 pcpu_mevt->evt.irq = -1; 570 } 571 } 572 } 573 return err; 574 } 575 576 static int __init mct_init_dt(struct device_node *np, unsigned int int_type) 577 { 578 u32 nr_irqs, i; 579 int ret; 580 581 mct_int_type = int_type; 582 583 /* This driver uses only one global timer interrupt */ 584 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ); 585 586 /* 587 * Find out the number of local irqs specified. The local 588 * timer irqs are specified after the four global timer 589 * irqs are specified. 590 */ 591 nr_irqs = of_irq_count(np); 592 for (i = MCT_L0_IRQ; i < nr_irqs; i++) 593 mct_irqs[i] = irq_of_parse_and_map(np, i); 594 595 ret = exynos4_timer_resources(np, of_iomap(np, 0)); 596 if (ret) 597 return ret; 598 599 ret = exynos4_clocksource_init(); 600 if (ret) 601 return ret; 602 603 return exynos4_clockevent_init(); 604 } 605 606 607 static int __init mct_init_spi(struct device_node *np) 608 { 609 return mct_init_dt(np, MCT_INT_SPI); 610 } 611 612 static int __init mct_init_ppi(struct device_node *np) 613 { 614 return mct_init_dt(np, MCT_INT_PPI); 615 } 616 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi); 617 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi); 618