1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 
28 #define EXYNOS4_MCTREG(x)		(x)
29 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
30 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
31 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
32 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
33 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
34 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
35 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
36 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
37 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
38 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
39 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
40 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
41 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
42 
43 #define MCT_L_TCNTB_OFFSET		(0x00)
44 #define MCT_L_ICNTB_OFFSET		(0x08)
45 #define MCT_L_TCON_OFFSET		(0x20)
46 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
47 #define MCT_L_INT_ENB_OFFSET		(0x34)
48 #define MCT_L_WSTAT_OFFSET		(0x40)
49 #define MCT_G_TCON_START		(1 << 8)
50 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
51 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
52 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
53 #define MCT_L_TCON_INT_START		(1 << 1)
54 #define MCT_L_TCON_TIMER_START		(1 << 0)
55 
56 #define TICK_BASE_CNT	1
57 
58 enum {
59 	MCT_INT_SPI,
60 	MCT_INT_PPI
61 };
62 
63 enum {
64 	MCT_G0_IRQ,
65 	MCT_G1_IRQ,
66 	MCT_G2_IRQ,
67 	MCT_G3_IRQ,
68 	MCT_L0_IRQ,
69 	MCT_L1_IRQ,
70 	MCT_L2_IRQ,
71 	MCT_L3_IRQ,
72 	MCT_L4_IRQ,
73 	MCT_L5_IRQ,
74 	MCT_L6_IRQ,
75 	MCT_L7_IRQ,
76 	MCT_NR_IRQS,
77 };
78 
79 static void __iomem *reg_base;
80 static unsigned long clk_rate;
81 static unsigned int mct_int_type;
82 static int mct_irqs[MCT_NR_IRQS];
83 
84 struct mct_clock_event_device {
85 	struct clock_event_device evt;
86 	unsigned long base;
87 	char name[10];
88 };
89 
90 static void exynos4_mct_write(unsigned int value, unsigned long offset)
91 {
92 	unsigned long stat_addr;
93 	u32 mask;
94 	u32 i;
95 
96 	__raw_writel(value, reg_base + offset);
97 
98 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
99 		stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
100 		switch (offset & EXYNOS4_MCT_L_MASK) {
101 		case MCT_L_TCON_OFFSET:
102 			mask = 1 << 3;		/* L_TCON write status */
103 			break;
104 		case MCT_L_ICNTB_OFFSET:
105 			mask = 1 << 1;		/* L_ICNTB write status */
106 			break;
107 		case MCT_L_TCNTB_OFFSET:
108 			mask = 1 << 0;		/* L_TCNTB write status */
109 			break;
110 		default:
111 			return;
112 		}
113 	} else {
114 		switch (offset) {
115 		case EXYNOS4_MCT_G_TCON:
116 			stat_addr = EXYNOS4_MCT_G_WSTAT;
117 			mask = 1 << 16;		/* G_TCON write status */
118 			break;
119 		case EXYNOS4_MCT_G_COMP0_L:
120 			stat_addr = EXYNOS4_MCT_G_WSTAT;
121 			mask = 1 << 0;		/* G_COMP0_L write status */
122 			break;
123 		case EXYNOS4_MCT_G_COMP0_U:
124 			stat_addr = EXYNOS4_MCT_G_WSTAT;
125 			mask = 1 << 1;		/* G_COMP0_U write status */
126 			break;
127 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
128 			stat_addr = EXYNOS4_MCT_G_WSTAT;
129 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
130 			break;
131 		case EXYNOS4_MCT_G_CNT_L:
132 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
133 			mask = 1 << 0;		/* G_CNT_L write status */
134 			break;
135 		case EXYNOS4_MCT_G_CNT_U:
136 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
137 			mask = 1 << 1;		/* G_CNT_U write status */
138 			break;
139 		default:
140 			return;
141 		}
142 	}
143 
144 	/* Wait maximum 1 ms until written values are applied */
145 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
146 		if (__raw_readl(reg_base + stat_addr) & mask) {
147 			__raw_writel(mask, reg_base + stat_addr);
148 			return;
149 		}
150 
151 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
152 }
153 
154 /* Clocksource handling */
155 static void exynos4_mct_frc_start(u32 hi, u32 lo)
156 {
157 	u32 reg;
158 
159 	exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
160 	exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
161 
162 	reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
163 	reg |= MCT_G_TCON_START;
164 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
165 }
166 
167 static cycle_t exynos4_frc_read(struct clocksource *cs)
168 {
169 	unsigned int lo, hi;
170 	u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
171 
172 	do {
173 		hi = hi2;
174 		lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
175 		hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
176 	} while (hi != hi2);
177 
178 	return ((cycle_t)hi << 32) | lo;
179 }
180 
181 static void exynos4_frc_resume(struct clocksource *cs)
182 {
183 	exynos4_mct_frc_start(0, 0);
184 }
185 
186 struct clocksource mct_frc = {
187 	.name		= "mct-frc",
188 	.rating		= 400,
189 	.read		= exynos4_frc_read,
190 	.mask		= CLOCKSOURCE_MASK(64),
191 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
192 	.resume		= exynos4_frc_resume,
193 };
194 
195 static void __init exynos4_clocksource_init(void)
196 {
197 	exynos4_mct_frc_start(0, 0);
198 
199 	if (clocksource_register_hz(&mct_frc, clk_rate))
200 		panic("%s: can't register clocksource\n", mct_frc.name);
201 }
202 
203 static void exynos4_mct_comp0_stop(void)
204 {
205 	unsigned int tcon;
206 
207 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
208 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
209 
210 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
211 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
212 }
213 
214 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
215 				    unsigned long cycles)
216 {
217 	unsigned int tcon;
218 	cycle_t comp_cycle;
219 
220 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
221 
222 	if (mode == CLOCK_EVT_MODE_PERIODIC) {
223 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
224 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
225 	}
226 
227 	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
228 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
229 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
230 
231 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
232 
233 	tcon |= MCT_G_TCON_COMP0_ENABLE;
234 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
235 }
236 
237 static int exynos4_comp_set_next_event(unsigned long cycles,
238 				       struct clock_event_device *evt)
239 {
240 	exynos4_mct_comp0_start(evt->mode, cycles);
241 
242 	return 0;
243 }
244 
245 static void exynos4_comp_set_mode(enum clock_event_mode mode,
246 				  struct clock_event_device *evt)
247 {
248 	unsigned long cycles_per_jiffy;
249 	exynos4_mct_comp0_stop();
250 
251 	switch (mode) {
252 	case CLOCK_EVT_MODE_PERIODIC:
253 		cycles_per_jiffy =
254 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
255 		exynos4_mct_comp0_start(mode, cycles_per_jiffy);
256 		break;
257 
258 	case CLOCK_EVT_MODE_ONESHOT:
259 	case CLOCK_EVT_MODE_UNUSED:
260 	case CLOCK_EVT_MODE_SHUTDOWN:
261 	case CLOCK_EVT_MODE_RESUME:
262 		break;
263 	}
264 }
265 
266 static struct clock_event_device mct_comp_device = {
267 	.name		= "mct-comp",
268 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
269 	.rating		= 250,
270 	.set_next_event	= exynos4_comp_set_next_event,
271 	.set_mode	= exynos4_comp_set_mode,
272 };
273 
274 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
275 {
276 	struct clock_event_device *evt = dev_id;
277 
278 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
279 
280 	evt->event_handler(evt);
281 
282 	return IRQ_HANDLED;
283 }
284 
285 static struct irqaction mct_comp_event_irq = {
286 	.name		= "mct_comp_irq",
287 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
288 	.handler	= exynos4_mct_comp_isr,
289 	.dev_id		= &mct_comp_device,
290 };
291 
292 static void exynos4_clockevent_init(void)
293 {
294 	mct_comp_device.cpumask = cpumask_of(0);
295 	clockevents_config_and_register(&mct_comp_device, clk_rate,
296 					0xf, 0xffffffff);
297 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
298 }
299 
300 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
301 
302 /* Clock event handling */
303 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
304 {
305 	unsigned long tmp;
306 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
307 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
308 
309 	tmp = __raw_readl(reg_base + offset);
310 	if (tmp & mask) {
311 		tmp &= ~mask;
312 		exynos4_mct_write(tmp, offset);
313 	}
314 }
315 
316 static void exynos4_mct_tick_start(unsigned long cycles,
317 				   struct mct_clock_event_device *mevt)
318 {
319 	unsigned long tmp;
320 
321 	exynos4_mct_tick_stop(mevt);
322 
323 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
324 
325 	/* update interrupt count buffer */
326 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
327 
328 	/* enable MCT tick interrupt */
329 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
330 
331 	tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
332 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
333 	       MCT_L_TCON_INTERVAL_MODE;
334 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
335 }
336 
337 static int exynos4_tick_set_next_event(unsigned long cycles,
338 				       struct clock_event_device *evt)
339 {
340 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
341 
342 	exynos4_mct_tick_start(cycles, mevt);
343 
344 	return 0;
345 }
346 
347 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
348 					 struct clock_event_device *evt)
349 {
350 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
351 	unsigned long cycles_per_jiffy;
352 
353 	exynos4_mct_tick_stop(mevt);
354 
355 	switch (mode) {
356 	case CLOCK_EVT_MODE_PERIODIC:
357 		cycles_per_jiffy =
358 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
359 		exynos4_mct_tick_start(cycles_per_jiffy, mevt);
360 		break;
361 
362 	case CLOCK_EVT_MODE_ONESHOT:
363 	case CLOCK_EVT_MODE_UNUSED:
364 	case CLOCK_EVT_MODE_SHUTDOWN:
365 	case CLOCK_EVT_MODE_RESUME:
366 		break;
367 	}
368 }
369 
370 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
371 {
372 	struct clock_event_device *evt = &mevt->evt;
373 
374 	/*
375 	 * This is for supporting oneshot mode.
376 	 * Mct would generate interrupt periodically
377 	 * without explicit stopping.
378 	 */
379 	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
380 		exynos4_mct_tick_stop(mevt);
381 
382 	/* Clear the MCT tick interrupt */
383 	if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
384 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
385 		return 1;
386 	} else {
387 		return 0;
388 	}
389 }
390 
391 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
392 {
393 	struct mct_clock_event_device *mevt = dev_id;
394 	struct clock_event_device *evt = &mevt->evt;
395 
396 	exynos4_mct_tick_clear(mevt);
397 
398 	evt->event_handler(evt);
399 
400 	return IRQ_HANDLED;
401 }
402 
403 static int exynos4_local_timer_setup(struct clock_event_device *evt)
404 {
405 	struct mct_clock_event_device *mevt;
406 	unsigned int cpu = smp_processor_id();
407 
408 	mevt = container_of(evt, struct mct_clock_event_device, evt);
409 
410 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
411 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
412 
413 	evt->name = mevt->name;
414 	evt->cpumask = cpumask_of(cpu);
415 	evt->set_next_event = exynos4_tick_set_next_event;
416 	evt->set_mode = exynos4_tick_set_mode;
417 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
418 	evt->rating = 450;
419 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
420 					0xf, 0x7fffffff);
421 
422 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
423 
424 	if (mct_int_type == MCT_INT_SPI) {
425 		evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
426 		if (request_irq(evt->irq, exynos4_mct_tick_isr,
427 				IRQF_TIMER | IRQF_NOBALANCING,
428 				evt->name, mevt)) {
429 			pr_err("exynos-mct: cannot register IRQ %d\n",
430 				evt->irq);
431 			return -EIO;
432 		}
433 	} else {
434 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
435 	}
436 
437 	return 0;
438 }
439 
440 static void exynos4_local_timer_stop(struct clock_event_device *evt)
441 {
442 	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
443 	if (mct_int_type == MCT_INT_SPI)
444 		free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
445 	else
446 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
447 }
448 
449 static int exynos4_mct_cpu_notify(struct notifier_block *self,
450 					   unsigned long action, void *hcpu)
451 {
452 	struct mct_clock_event_device *mevt;
453 	unsigned int cpu;
454 
455 	/*
456 	 * Grab cpu pointer in each case to avoid spurious
457 	 * preemptible warnings
458 	 */
459 	switch (action & ~CPU_TASKS_FROZEN) {
460 	case CPU_STARTING:
461 		mevt = this_cpu_ptr(&percpu_mct_tick);
462 		exynos4_local_timer_setup(&mevt->evt);
463 		break;
464 	case CPU_ONLINE:
465 		cpu = (unsigned long)hcpu;
466 		if (mct_int_type == MCT_INT_SPI)
467 			irq_set_affinity(mct_irqs[MCT_L0_IRQ + cpu],
468 						cpumask_of(cpu));
469 		break;
470 	case CPU_DYING:
471 		mevt = this_cpu_ptr(&percpu_mct_tick);
472 		exynos4_local_timer_stop(&mevt->evt);
473 		break;
474 	}
475 
476 	return NOTIFY_OK;
477 }
478 
479 static struct notifier_block exynos4_mct_cpu_nb = {
480 	.notifier_call = exynos4_mct_cpu_notify,
481 };
482 
483 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
484 {
485 	int err;
486 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
487 	struct clk *mct_clk, *tick_clk;
488 
489 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
490 				clk_get(NULL, "fin_pll");
491 	if (IS_ERR(tick_clk))
492 		panic("%s: unable to determine tick clock rate\n", __func__);
493 	clk_rate = clk_get_rate(tick_clk);
494 
495 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
496 	if (IS_ERR(mct_clk))
497 		panic("%s: unable to retrieve mct clock instance\n", __func__);
498 	clk_prepare_enable(mct_clk);
499 
500 	reg_base = base;
501 	if (!reg_base)
502 		panic("%s: unable to ioremap mct address space\n", __func__);
503 
504 	if (mct_int_type == MCT_INT_PPI) {
505 
506 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
507 					 exynos4_mct_tick_isr, "MCT",
508 					 &percpu_mct_tick);
509 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
510 		     mct_irqs[MCT_L0_IRQ], err);
511 	} else {
512 		irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
513 	}
514 
515 	err = register_cpu_notifier(&exynos4_mct_cpu_nb);
516 	if (err)
517 		goto out_irq;
518 
519 	/* Immediately configure the timer on the boot CPU */
520 	exynos4_local_timer_setup(&mevt->evt);
521 	return;
522 
523 out_irq:
524 	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
525 }
526 
527 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
528 {
529 	mct_irqs[MCT_G0_IRQ] = irq_g0;
530 	mct_irqs[MCT_L0_IRQ] = irq_l0;
531 	mct_irqs[MCT_L1_IRQ] = irq_l1;
532 	mct_int_type = MCT_INT_SPI;
533 
534 	exynos4_timer_resources(NULL, base);
535 	exynos4_clocksource_init();
536 	exynos4_clockevent_init();
537 }
538 
539 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
540 {
541 	u32 nr_irqs, i;
542 
543 	mct_int_type = int_type;
544 
545 	/* This driver uses only one global timer interrupt */
546 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
547 
548 	/*
549 	 * Find out the number of local irqs specified. The local
550 	 * timer irqs are specified after the four global timer
551 	 * irqs are specified.
552 	 */
553 #ifdef CONFIG_OF
554 	nr_irqs = of_irq_count(np);
555 #else
556 	nr_irqs = 0;
557 #endif
558 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
559 		mct_irqs[i] = irq_of_parse_and_map(np, i);
560 
561 	exynos4_timer_resources(np, of_iomap(np, 0));
562 	exynos4_clocksource_init();
563 	exynos4_clockevent_init();
564 }
565 
566 
567 static void __init mct_init_spi(struct device_node *np)
568 {
569 	return mct_init_dt(np, MCT_INT_SPI);
570 }
571 
572 static void __init mct_init_ppi(struct device_node *np)
573 {
574 	return mct_init_dt(np, MCT_INT_PPI);
575 }
576 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
577 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
578