1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28 
29 #define EXYNOS4_MCTREG(x)		(x)
30 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
43 
44 #define MCT_L_TCNTB_OFFSET		(0x00)
45 #define MCT_L_ICNTB_OFFSET		(0x08)
46 #define MCT_L_TCON_OFFSET		(0x20)
47 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
48 #define MCT_L_INT_ENB_OFFSET		(0x34)
49 #define MCT_L_WSTAT_OFFSET		(0x40)
50 #define MCT_G_TCON_START		(1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
54 #define MCT_L_TCON_INT_START		(1 << 1)
55 #define MCT_L_TCON_TIMER_START		(1 << 0)
56 
57 #define TICK_BASE_CNT	1
58 
59 enum {
60 	MCT_INT_SPI,
61 	MCT_INT_PPI
62 };
63 
64 enum {
65 	MCT_G0_IRQ,
66 	MCT_G1_IRQ,
67 	MCT_G2_IRQ,
68 	MCT_G3_IRQ,
69 	MCT_L0_IRQ,
70 	MCT_L1_IRQ,
71 	MCT_L2_IRQ,
72 	MCT_L3_IRQ,
73 	MCT_L4_IRQ,
74 	MCT_L5_IRQ,
75 	MCT_L6_IRQ,
76 	MCT_L7_IRQ,
77 	MCT_NR_IRQS,
78 };
79 
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84 
85 struct mct_clock_event_device {
86 	struct clock_event_device evt;
87 	unsigned long base;
88 	char name[10];
89 };
90 
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93 	unsigned long stat_addr;
94 	u32 mask;
95 	u32 i;
96 
97 	writel_relaxed(value, reg_base + offset);
98 
99 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100 		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 		switch (offset & ~EXYNOS4_MCT_L_MASK) {
102 		case MCT_L_TCON_OFFSET:
103 			mask = 1 << 3;		/* L_TCON write status */
104 			break;
105 		case MCT_L_ICNTB_OFFSET:
106 			mask = 1 << 1;		/* L_ICNTB write status */
107 			break;
108 		case MCT_L_TCNTB_OFFSET:
109 			mask = 1 << 0;		/* L_TCNTB write status */
110 			break;
111 		default:
112 			return;
113 		}
114 	} else {
115 		switch (offset) {
116 		case EXYNOS4_MCT_G_TCON:
117 			stat_addr = EXYNOS4_MCT_G_WSTAT;
118 			mask = 1 << 16;		/* G_TCON write status */
119 			break;
120 		case EXYNOS4_MCT_G_COMP0_L:
121 			stat_addr = EXYNOS4_MCT_G_WSTAT;
122 			mask = 1 << 0;		/* G_COMP0_L write status */
123 			break;
124 		case EXYNOS4_MCT_G_COMP0_U:
125 			stat_addr = EXYNOS4_MCT_G_WSTAT;
126 			mask = 1 << 1;		/* G_COMP0_U write status */
127 			break;
128 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129 			stat_addr = EXYNOS4_MCT_G_WSTAT;
130 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
131 			break;
132 		case EXYNOS4_MCT_G_CNT_L:
133 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 			mask = 1 << 0;		/* G_CNT_L write status */
135 			break;
136 		case EXYNOS4_MCT_G_CNT_U:
137 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 			mask = 1 << 1;		/* G_CNT_U write status */
139 			break;
140 		default:
141 			return;
142 		}
143 	}
144 
145 	/* Wait maximum 1 ms until written values are applied */
146 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147 		if (readl_relaxed(reg_base + stat_addr) & mask) {
148 			writel_relaxed(mask, reg_base + stat_addr);
149 			return;
150 		}
151 
152 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154 
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158 	u32 reg;
159 
160 	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161 	reg |= MCT_G_TCON_START;
162 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164 
165 /**
166  * exynos4_read_count_64 - Read all 64-bits of the global counter
167  *
168  * This will read all 64-bits of the global counter taking care to make sure
169  * that the upper and lower half match.  Note that reading the MCT can be quite
170  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171  * only) version when possible.
172  *
173  * Returns the number of cycles in the global counter.
174  */
175 static u64 exynos4_read_count_64(void)
176 {
177 	unsigned int lo, hi;
178 	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179 
180 	do {
181 		hi = hi2;
182 		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183 		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184 	} while (hi != hi2);
185 
186 	return ((cycle_t)hi << 32) | lo;
187 }
188 
189 /**
190  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191  *
192  * This will read just the lower 32-bits of the global counter.  This is marked
193  * as notrace so it can be used by the scheduler clock.
194  *
195  * Returns the number of cycles in the global counter (lower 32 bits).
196  */
197 static u32 notrace exynos4_read_count_32(void)
198 {
199 	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200 }
201 
202 static cycle_t exynos4_frc_read(struct clocksource *cs)
203 {
204 	return exynos4_read_count_32();
205 }
206 
207 static void exynos4_frc_resume(struct clocksource *cs)
208 {
209 	exynos4_mct_frc_start();
210 }
211 
212 static struct clocksource mct_frc = {
213 	.name		= "mct-frc",
214 	.rating		= 400,
215 	.read		= exynos4_frc_read,
216 	.mask		= CLOCKSOURCE_MASK(32),
217 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
218 	.resume		= exynos4_frc_resume,
219 };
220 
221 static u64 notrace exynos4_read_sched_clock(void)
222 {
223 	return exynos4_read_count_32();
224 }
225 
226 static struct delay_timer exynos4_delay_timer;
227 
228 static cycles_t exynos4_read_current_timer(void)
229 {
230 	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231 			 "cycles_t needs to move to 32-bit for ARM64 usage");
232 	return exynos4_read_count_32();
233 }
234 
235 static void __init exynos4_clocksource_init(void)
236 {
237 	exynos4_mct_frc_start();
238 
239 	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240 	exynos4_delay_timer.freq = clk_rate;
241 	register_current_timer_delay(&exynos4_delay_timer);
242 
243 	if (clocksource_register_hz(&mct_frc, clk_rate))
244 		panic("%s: can't register clocksource\n", mct_frc.name);
245 
246 	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
247 }
248 
249 static void exynos4_mct_comp0_stop(void)
250 {
251 	unsigned int tcon;
252 
253 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
254 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
255 
256 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
257 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
258 }
259 
260 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
261 {
262 	unsigned int tcon;
263 	cycle_t comp_cycle;
264 
265 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
266 
267 	if (periodic) {
268 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
269 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
270 	}
271 
272 	comp_cycle = exynos4_read_count_64() + cycles;
273 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
274 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
275 
276 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
277 
278 	tcon |= MCT_G_TCON_COMP0_ENABLE;
279 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
280 }
281 
282 static int exynos4_comp_set_next_event(unsigned long cycles,
283 				       struct clock_event_device *evt)
284 {
285 	exynos4_mct_comp0_start(false, cycles);
286 
287 	return 0;
288 }
289 
290 static int mct_set_state_shutdown(struct clock_event_device *evt)
291 {
292 	exynos4_mct_comp0_stop();
293 	return 0;
294 }
295 
296 static int mct_set_state_periodic(struct clock_event_device *evt)
297 {
298 	unsigned long cycles_per_jiffy;
299 
300 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
301 			    >> evt->shift);
302 	exynos4_mct_comp0_stop();
303 	exynos4_mct_comp0_start(true, cycles_per_jiffy);
304 	return 0;
305 }
306 
307 static struct clock_event_device mct_comp_device = {
308 	.name			= "mct-comp",
309 	.features		= CLOCK_EVT_FEAT_PERIODIC |
310 				  CLOCK_EVT_FEAT_ONESHOT,
311 	.rating			= 250,
312 	.set_next_event		= exynos4_comp_set_next_event,
313 	.set_state_periodic	= mct_set_state_periodic,
314 	.set_state_shutdown	= mct_set_state_shutdown,
315 	.set_state_oneshot	= mct_set_state_shutdown,
316 	.set_state_oneshot_stopped = mct_set_state_shutdown,
317 	.tick_resume		= mct_set_state_shutdown,
318 };
319 
320 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
321 {
322 	struct clock_event_device *evt = dev_id;
323 
324 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
325 
326 	evt->event_handler(evt);
327 
328 	return IRQ_HANDLED;
329 }
330 
331 static struct irqaction mct_comp_event_irq = {
332 	.name		= "mct_comp_irq",
333 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
334 	.handler	= exynos4_mct_comp_isr,
335 	.dev_id		= &mct_comp_device,
336 };
337 
338 static void exynos4_clockevent_init(void)
339 {
340 	mct_comp_device.cpumask = cpumask_of(0);
341 	clockevents_config_and_register(&mct_comp_device, clk_rate,
342 					0xf, 0xffffffff);
343 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
344 }
345 
346 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
347 
348 /* Clock event handling */
349 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
350 {
351 	unsigned long tmp;
352 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
353 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
354 
355 	tmp = readl_relaxed(reg_base + offset);
356 	if (tmp & mask) {
357 		tmp &= ~mask;
358 		exynos4_mct_write(tmp, offset);
359 	}
360 }
361 
362 static void exynos4_mct_tick_start(unsigned long cycles,
363 				   struct mct_clock_event_device *mevt)
364 {
365 	unsigned long tmp;
366 
367 	exynos4_mct_tick_stop(mevt);
368 
369 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
370 
371 	/* update interrupt count buffer */
372 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
373 
374 	/* enable MCT tick interrupt */
375 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
376 
377 	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
378 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
379 	       MCT_L_TCON_INTERVAL_MODE;
380 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
381 }
382 
383 static int exynos4_tick_set_next_event(unsigned long cycles,
384 				       struct clock_event_device *evt)
385 {
386 	struct mct_clock_event_device *mevt;
387 
388 	mevt = container_of(evt, struct mct_clock_event_device, evt);
389 	exynos4_mct_tick_start(cycles, mevt);
390 	return 0;
391 }
392 
393 static int set_state_shutdown(struct clock_event_device *evt)
394 {
395 	struct mct_clock_event_device *mevt;
396 
397 	mevt = container_of(evt, struct mct_clock_event_device, evt);
398 	exynos4_mct_tick_stop(mevt);
399 	return 0;
400 }
401 
402 static int set_state_periodic(struct clock_event_device *evt)
403 {
404 	struct mct_clock_event_device *mevt;
405 	unsigned long cycles_per_jiffy;
406 
407 	mevt = container_of(evt, struct mct_clock_event_device, evt);
408 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
409 			    >> evt->shift);
410 	exynos4_mct_tick_stop(mevt);
411 	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
412 	return 0;
413 }
414 
415 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
416 {
417 	/*
418 	 * This is for supporting oneshot mode.
419 	 * Mct would generate interrupt periodically
420 	 * without explicit stopping.
421 	 */
422 	if (!clockevent_state_periodic(&mevt->evt))
423 		exynos4_mct_tick_stop(mevt);
424 
425 	/* Clear the MCT tick interrupt */
426 	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
427 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
428 }
429 
430 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
431 {
432 	struct mct_clock_event_device *mevt = dev_id;
433 	struct clock_event_device *evt = &mevt->evt;
434 
435 	exynos4_mct_tick_clear(mevt);
436 
437 	evt->event_handler(evt);
438 
439 	return IRQ_HANDLED;
440 }
441 
442 static int exynos4_local_timer_setup(struct mct_clock_event_device *mevt)
443 {
444 	struct clock_event_device *evt = &mevt->evt;
445 	unsigned int cpu = smp_processor_id();
446 
447 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
448 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
449 
450 	evt->name = mevt->name;
451 	evt->cpumask = cpumask_of(cpu);
452 	evt->set_next_event = exynos4_tick_set_next_event;
453 	evt->set_state_periodic = set_state_periodic;
454 	evt->set_state_shutdown = set_state_shutdown;
455 	evt->set_state_oneshot = set_state_shutdown;
456 	evt->set_state_oneshot_stopped = set_state_shutdown;
457 	evt->tick_resume = set_state_shutdown;
458 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
459 	evt->rating = 450;
460 
461 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
462 
463 	if (mct_int_type == MCT_INT_SPI) {
464 
465 		if (evt->irq == -1)
466 			return -EIO;
467 
468 		irq_force_affinity(evt->irq, cpumask_of(cpu));
469 		enable_irq(evt->irq);
470 	} else {
471 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
472 	}
473 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
474 					0xf, 0x7fffffff);
475 
476 	return 0;
477 }
478 
479 static void exynos4_local_timer_stop(struct mct_clock_event_device *mevt)
480 {
481 	struct clock_event_device *evt = &mevt->evt;
482 
483 	evt->set_state_shutdown(evt);
484 	if (mct_int_type == MCT_INT_SPI) {
485 		if (evt->irq != -1)
486 			disable_irq_nosync(evt->irq);
487 	} else {
488 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
489 	}
490 }
491 
492 static int exynos4_mct_cpu_notify(struct notifier_block *self,
493 					   unsigned long action, void *hcpu)
494 {
495 	struct mct_clock_event_device *mevt;
496 
497 	/*
498 	 * Grab cpu pointer in each case to avoid spurious
499 	 * preemptible warnings
500 	 */
501 	switch (action & ~CPU_TASKS_FROZEN) {
502 	case CPU_STARTING:
503 		mevt = this_cpu_ptr(&percpu_mct_tick);
504 		exynos4_local_timer_setup(mevt);
505 		break;
506 	case CPU_DYING:
507 		mevt = this_cpu_ptr(&percpu_mct_tick);
508 		exynos4_local_timer_stop(mevt);
509 		break;
510 	}
511 
512 	return NOTIFY_OK;
513 }
514 
515 static struct notifier_block exynos4_mct_cpu_nb = {
516 	.notifier_call = exynos4_mct_cpu_notify,
517 };
518 
519 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
520 {
521 	int err, cpu;
522 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
523 	struct clk *mct_clk, *tick_clk;
524 
525 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
526 				clk_get(NULL, "fin_pll");
527 	if (IS_ERR(tick_clk))
528 		panic("%s: unable to determine tick clock rate\n", __func__);
529 	clk_rate = clk_get_rate(tick_clk);
530 
531 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
532 	if (IS_ERR(mct_clk))
533 		panic("%s: unable to retrieve mct clock instance\n", __func__);
534 	clk_prepare_enable(mct_clk);
535 
536 	reg_base = base;
537 	if (!reg_base)
538 		panic("%s: unable to ioremap mct address space\n", __func__);
539 
540 	if (mct_int_type == MCT_INT_PPI) {
541 
542 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
543 					 exynos4_mct_tick_isr, "MCT",
544 					 &percpu_mct_tick);
545 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
546 		     mct_irqs[MCT_L0_IRQ], err);
547 	} else {
548 		for_each_possible_cpu(cpu) {
549 			int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
550 			struct mct_clock_event_device *pcpu_mevt =
551 				per_cpu_ptr(&percpu_mct_tick, cpu);
552 
553 			pcpu_mevt->evt.irq = -1;
554 
555 			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
556 			if (request_irq(mct_irq,
557 					exynos4_mct_tick_isr,
558 					IRQF_TIMER | IRQF_NOBALANCING,
559 					pcpu_mevt->name, pcpu_mevt)) {
560 				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
561 									cpu);
562 
563 				continue;
564 			}
565 			pcpu_mevt->evt.irq = mct_irq;
566 		}
567 	}
568 
569 	err = register_cpu_notifier(&exynos4_mct_cpu_nb);
570 	if (err)
571 		goto out_irq;
572 
573 	/* Immediately configure the timer on the boot CPU */
574 	exynos4_local_timer_setup(mevt);
575 	return;
576 
577 out_irq:
578 	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
579 }
580 
581 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
582 {
583 	u32 nr_irqs, i;
584 
585 	mct_int_type = int_type;
586 
587 	/* This driver uses only one global timer interrupt */
588 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
589 
590 	/*
591 	 * Find out the number of local irqs specified. The local
592 	 * timer irqs are specified after the four global timer
593 	 * irqs are specified.
594 	 */
595 #ifdef CONFIG_OF
596 	nr_irqs = of_irq_count(np);
597 #else
598 	nr_irqs = 0;
599 #endif
600 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
601 		mct_irqs[i] = irq_of_parse_and_map(np, i);
602 
603 	exynos4_timer_resources(np, of_iomap(np, 0));
604 	exynos4_clocksource_init();
605 	exynos4_clockevent_init();
606 }
607 
608 
609 static void __init mct_init_spi(struct device_node *np)
610 {
611 	return mct_init_dt(np, MCT_INT_SPI);
612 }
613 
614 static void __init mct_init_ppi(struct device_node *np)
615 {
616 	return mct_init_dt(np, MCT_INT_PPI);
617 }
618 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
619 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
620