xref: /openbmc/linux/drivers/clocksource/exynos_mct.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/err.h>
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/percpu.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/clocksource.h>
25 #include <linux/sched_clock.h>
26 
27 #define EXYNOS4_MCTREG(x)		(x)
28 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
29 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
30 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
31 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
32 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
33 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
34 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
35 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
36 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
37 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
38 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
39 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
40 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
41 
42 #define MCT_L_TCNTB_OFFSET		(0x00)
43 #define MCT_L_ICNTB_OFFSET		(0x08)
44 #define MCT_L_TCON_OFFSET		(0x20)
45 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
46 #define MCT_L_INT_ENB_OFFSET		(0x34)
47 #define MCT_L_WSTAT_OFFSET		(0x40)
48 #define MCT_G_TCON_START		(1 << 8)
49 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
50 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
51 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
52 #define MCT_L_TCON_INT_START		(1 << 1)
53 #define MCT_L_TCON_TIMER_START		(1 << 0)
54 
55 #define TICK_BASE_CNT	1
56 
57 enum {
58 	MCT_INT_SPI,
59 	MCT_INT_PPI
60 };
61 
62 enum {
63 	MCT_G0_IRQ,
64 	MCT_G1_IRQ,
65 	MCT_G2_IRQ,
66 	MCT_G3_IRQ,
67 	MCT_L0_IRQ,
68 	MCT_L1_IRQ,
69 	MCT_L2_IRQ,
70 	MCT_L3_IRQ,
71 	MCT_L4_IRQ,
72 	MCT_L5_IRQ,
73 	MCT_L6_IRQ,
74 	MCT_L7_IRQ,
75 	MCT_NR_IRQS,
76 };
77 
78 static void __iomem *reg_base;
79 static unsigned long clk_rate;
80 static unsigned int mct_int_type;
81 static int mct_irqs[MCT_NR_IRQS];
82 
83 struct mct_clock_event_device {
84 	struct clock_event_device evt;
85 	unsigned long base;
86 	char name[10];
87 };
88 
89 static void exynos4_mct_write(unsigned int value, unsigned long offset)
90 {
91 	unsigned long stat_addr;
92 	u32 mask;
93 	u32 i;
94 
95 	writel_relaxed(value, reg_base + offset);
96 
97 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
98 		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
99 		switch (offset & ~EXYNOS4_MCT_L_MASK) {
100 		case MCT_L_TCON_OFFSET:
101 			mask = 1 << 3;		/* L_TCON write status */
102 			break;
103 		case MCT_L_ICNTB_OFFSET:
104 			mask = 1 << 1;		/* L_ICNTB write status */
105 			break;
106 		case MCT_L_TCNTB_OFFSET:
107 			mask = 1 << 0;		/* L_TCNTB write status */
108 			break;
109 		default:
110 			return;
111 		}
112 	} else {
113 		switch (offset) {
114 		case EXYNOS4_MCT_G_TCON:
115 			stat_addr = EXYNOS4_MCT_G_WSTAT;
116 			mask = 1 << 16;		/* G_TCON write status */
117 			break;
118 		case EXYNOS4_MCT_G_COMP0_L:
119 			stat_addr = EXYNOS4_MCT_G_WSTAT;
120 			mask = 1 << 0;		/* G_COMP0_L write status */
121 			break;
122 		case EXYNOS4_MCT_G_COMP0_U:
123 			stat_addr = EXYNOS4_MCT_G_WSTAT;
124 			mask = 1 << 1;		/* G_COMP0_U write status */
125 			break;
126 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
127 			stat_addr = EXYNOS4_MCT_G_WSTAT;
128 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
129 			break;
130 		case EXYNOS4_MCT_G_CNT_L:
131 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
132 			mask = 1 << 0;		/* G_CNT_L write status */
133 			break;
134 		case EXYNOS4_MCT_G_CNT_U:
135 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
136 			mask = 1 << 1;		/* G_CNT_U write status */
137 			break;
138 		default:
139 			return;
140 		}
141 	}
142 
143 	/* Wait maximum 1 ms until written values are applied */
144 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
145 		if (readl_relaxed(reg_base + stat_addr) & mask) {
146 			writel_relaxed(mask, reg_base + stat_addr);
147 			return;
148 		}
149 
150 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
151 }
152 
153 /* Clocksource handling */
154 static void exynos4_mct_frc_start(void)
155 {
156 	u32 reg;
157 
158 	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
159 	reg |= MCT_G_TCON_START;
160 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
161 }
162 
163 /**
164  * exynos4_read_count_64 - Read all 64-bits of the global counter
165  *
166  * This will read all 64-bits of the global counter taking care to make sure
167  * that the upper and lower half match.  Note that reading the MCT can be quite
168  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
169  * only) version when possible.
170  *
171  * Returns the number of cycles in the global counter.
172  */
173 static u64 exynos4_read_count_64(void)
174 {
175 	unsigned int lo, hi;
176 	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
177 
178 	do {
179 		hi = hi2;
180 		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
181 		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
182 	} while (hi != hi2);
183 
184 	return ((u64)hi << 32) | lo;
185 }
186 
187 /**
188  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
189  *
190  * This will read just the lower 32-bits of the global counter.  This is marked
191  * as notrace so it can be used by the scheduler clock.
192  *
193  * Returns the number of cycles in the global counter (lower 32 bits).
194  */
195 static u32 notrace exynos4_read_count_32(void)
196 {
197 	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
198 }
199 
200 static u64 exynos4_frc_read(struct clocksource *cs)
201 {
202 	return exynos4_read_count_32();
203 }
204 
205 static void exynos4_frc_resume(struct clocksource *cs)
206 {
207 	exynos4_mct_frc_start();
208 }
209 
210 static struct clocksource mct_frc = {
211 	.name		= "mct-frc",
212 	.rating		= 400,
213 	.read		= exynos4_frc_read,
214 	.mask		= CLOCKSOURCE_MASK(32),
215 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
216 	.resume		= exynos4_frc_resume,
217 };
218 
219 static u64 notrace exynos4_read_sched_clock(void)
220 {
221 	return exynos4_read_count_32();
222 }
223 
224 #if defined(CONFIG_ARM)
225 static struct delay_timer exynos4_delay_timer;
226 
227 static cycles_t exynos4_read_current_timer(void)
228 {
229 	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
230 			 "cycles_t needs to move to 32-bit for ARM64 usage");
231 	return exynos4_read_count_32();
232 }
233 #endif
234 
235 static int __init exynos4_clocksource_init(void)
236 {
237 	exynos4_mct_frc_start();
238 
239 #if defined(CONFIG_ARM)
240 	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
241 	exynos4_delay_timer.freq = clk_rate;
242 	register_current_timer_delay(&exynos4_delay_timer);
243 #endif
244 
245 	if (clocksource_register_hz(&mct_frc, clk_rate))
246 		panic("%s: can't register clocksource\n", mct_frc.name);
247 
248 	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
249 
250 	return 0;
251 }
252 
253 static void exynos4_mct_comp0_stop(void)
254 {
255 	unsigned int tcon;
256 
257 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
258 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
259 
260 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
261 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
262 }
263 
264 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
265 {
266 	unsigned int tcon;
267 	u64 comp_cycle;
268 
269 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
270 
271 	if (periodic) {
272 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
273 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
274 	}
275 
276 	comp_cycle = exynos4_read_count_64() + cycles;
277 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
278 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
279 
280 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
281 
282 	tcon |= MCT_G_TCON_COMP0_ENABLE;
283 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
284 }
285 
286 static int exynos4_comp_set_next_event(unsigned long cycles,
287 				       struct clock_event_device *evt)
288 {
289 	exynos4_mct_comp0_start(false, cycles);
290 
291 	return 0;
292 }
293 
294 static int mct_set_state_shutdown(struct clock_event_device *evt)
295 {
296 	exynos4_mct_comp0_stop();
297 	return 0;
298 }
299 
300 static int mct_set_state_periodic(struct clock_event_device *evt)
301 {
302 	unsigned long cycles_per_jiffy;
303 
304 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
305 			    >> evt->shift);
306 	exynos4_mct_comp0_stop();
307 	exynos4_mct_comp0_start(true, cycles_per_jiffy);
308 	return 0;
309 }
310 
311 static struct clock_event_device mct_comp_device = {
312 	.name			= "mct-comp",
313 	.features		= CLOCK_EVT_FEAT_PERIODIC |
314 				  CLOCK_EVT_FEAT_ONESHOT,
315 	.rating			= 250,
316 	.set_next_event		= exynos4_comp_set_next_event,
317 	.set_state_periodic	= mct_set_state_periodic,
318 	.set_state_shutdown	= mct_set_state_shutdown,
319 	.set_state_oneshot	= mct_set_state_shutdown,
320 	.set_state_oneshot_stopped = mct_set_state_shutdown,
321 	.tick_resume		= mct_set_state_shutdown,
322 };
323 
324 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
325 {
326 	struct clock_event_device *evt = dev_id;
327 
328 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
329 
330 	evt->event_handler(evt);
331 
332 	return IRQ_HANDLED;
333 }
334 
335 static struct irqaction mct_comp_event_irq = {
336 	.name		= "mct_comp_irq",
337 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
338 	.handler	= exynos4_mct_comp_isr,
339 	.dev_id		= &mct_comp_device,
340 };
341 
342 static int exynos4_clockevent_init(void)
343 {
344 	mct_comp_device.cpumask = cpumask_of(0);
345 	clockevents_config_and_register(&mct_comp_device, clk_rate,
346 					0xf, 0xffffffff);
347 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
348 
349 	return 0;
350 }
351 
352 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
353 
354 /* Clock event handling */
355 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
356 {
357 	unsigned long tmp;
358 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
359 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
360 
361 	tmp = readl_relaxed(reg_base + offset);
362 	if (tmp & mask) {
363 		tmp &= ~mask;
364 		exynos4_mct_write(tmp, offset);
365 	}
366 }
367 
368 static void exynos4_mct_tick_start(unsigned long cycles,
369 				   struct mct_clock_event_device *mevt)
370 {
371 	unsigned long tmp;
372 
373 	exynos4_mct_tick_stop(mevt);
374 
375 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
376 
377 	/* update interrupt count buffer */
378 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
379 
380 	/* enable MCT tick interrupt */
381 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
382 
383 	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
384 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
385 	       MCT_L_TCON_INTERVAL_MODE;
386 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
387 }
388 
389 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
390 {
391 	/* Clear the MCT tick interrupt */
392 	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
393 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
394 }
395 
396 static int exynos4_tick_set_next_event(unsigned long cycles,
397 				       struct clock_event_device *evt)
398 {
399 	struct mct_clock_event_device *mevt;
400 
401 	mevt = container_of(evt, struct mct_clock_event_device, evt);
402 	exynos4_mct_tick_start(cycles, mevt);
403 	return 0;
404 }
405 
406 static int set_state_shutdown(struct clock_event_device *evt)
407 {
408 	struct mct_clock_event_device *mevt;
409 
410 	mevt = container_of(evt, struct mct_clock_event_device, evt);
411 	exynos4_mct_tick_stop(mevt);
412 	exynos4_mct_tick_clear(mevt);
413 	return 0;
414 }
415 
416 static int set_state_periodic(struct clock_event_device *evt)
417 {
418 	struct mct_clock_event_device *mevt;
419 	unsigned long cycles_per_jiffy;
420 
421 	mevt = container_of(evt, struct mct_clock_event_device, evt);
422 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
423 			    >> evt->shift);
424 	exynos4_mct_tick_stop(mevt);
425 	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
426 	return 0;
427 }
428 
429 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
430 {
431 	struct mct_clock_event_device *mevt = dev_id;
432 	struct clock_event_device *evt = &mevt->evt;
433 
434 	/*
435 	 * This is for supporting oneshot mode.
436 	 * Mct would generate interrupt periodically
437 	 * without explicit stopping.
438 	 */
439 	if (!clockevent_state_periodic(&mevt->evt))
440 		exynos4_mct_tick_stop(mevt);
441 
442 	exynos4_mct_tick_clear(mevt);
443 
444 	evt->event_handler(evt);
445 
446 	return IRQ_HANDLED;
447 }
448 
449 static int exynos4_mct_starting_cpu(unsigned int cpu)
450 {
451 	struct mct_clock_event_device *mevt =
452 		per_cpu_ptr(&percpu_mct_tick, cpu);
453 	struct clock_event_device *evt = &mevt->evt;
454 
455 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
456 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
457 
458 	evt->name = mevt->name;
459 	evt->cpumask = cpumask_of(cpu);
460 	evt->set_next_event = exynos4_tick_set_next_event;
461 	evt->set_state_periodic = set_state_periodic;
462 	evt->set_state_shutdown = set_state_shutdown;
463 	evt->set_state_oneshot = set_state_shutdown;
464 	evt->set_state_oneshot_stopped = set_state_shutdown;
465 	evt->tick_resume = set_state_shutdown;
466 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
467 	evt->rating = 450;
468 
469 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
470 
471 	if (mct_int_type == MCT_INT_SPI) {
472 
473 		if (evt->irq == -1)
474 			return -EIO;
475 
476 		irq_force_affinity(evt->irq, cpumask_of(cpu));
477 		enable_irq(evt->irq);
478 	} else {
479 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
480 	}
481 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
482 					0xf, 0x7fffffff);
483 
484 	return 0;
485 }
486 
487 static int exynos4_mct_dying_cpu(unsigned int cpu)
488 {
489 	struct mct_clock_event_device *mevt =
490 		per_cpu_ptr(&percpu_mct_tick, cpu);
491 	struct clock_event_device *evt = &mevt->evt;
492 
493 	evt->set_state_shutdown(evt);
494 	if (mct_int_type == MCT_INT_SPI) {
495 		if (evt->irq != -1)
496 			disable_irq_nosync(evt->irq);
497 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
498 	} else {
499 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
500 	}
501 	return 0;
502 }
503 
504 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
505 {
506 	int err, cpu;
507 	struct clk *mct_clk, *tick_clk;
508 
509 	tick_clk = of_clk_get_by_name(np, "fin_pll");
510 	if (IS_ERR(tick_clk))
511 		panic("%s: unable to determine tick clock rate\n", __func__);
512 	clk_rate = clk_get_rate(tick_clk);
513 
514 	mct_clk = of_clk_get_by_name(np, "mct");
515 	if (IS_ERR(mct_clk))
516 		panic("%s: unable to retrieve mct clock instance\n", __func__);
517 	clk_prepare_enable(mct_clk);
518 
519 	reg_base = base;
520 	if (!reg_base)
521 		panic("%s: unable to ioremap mct address space\n", __func__);
522 
523 	if (mct_int_type == MCT_INT_PPI) {
524 
525 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
526 					 exynos4_mct_tick_isr, "MCT",
527 					 &percpu_mct_tick);
528 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
529 		     mct_irqs[MCT_L0_IRQ], err);
530 	} else {
531 		for_each_possible_cpu(cpu) {
532 			int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
533 			struct mct_clock_event_device *pcpu_mevt =
534 				per_cpu_ptr(&percpu_mct_tick, cpu);
535 
536 			pcpu_mevt->evt.irq = -1;
537 
538 			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
539 			if (request_irq(mct_irq,
540 					exynos4_mct_tick_isr,
541 					IRQF_TIMER | IRQF_NOBALANCING,
542 					pcpu_mevt->name, pcpu_mevt)) {
543 				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
544 									cpu);
545 
546 				continue;
547 			}
548 			pcpu_mevt->evt.irq = mct_irq;
549 		}
550 	}
551 
552 	/* Install hotplug callbacks which configure the timer on this CPU */
553 	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
554 				"clockevents/exynos4/mct_timer:starting",
555 				exynos4_mct_starting_cpu,
556 				exynos4_mct_dying_cpu);
557 	if (err)
558 		goto out_irq;
559 
560 	return 0;
561 
562 out_irq:
563 	if (mct_int_type == MCT_INT_PPI) {
564 		free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
565 	} else {
566 		for_each_possible_cpu(cpu) {
567 			struct mct_clock_event_device *pcpu_mevt =
568 				per_cpu_ptr(&percpu_mct_tick, cpu);
569 
570 			if (pcpu_mevt->evt.irq != -1) {
571 				free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
572 				pcpu_mevt->evt.irq = -1;
573 			}
574 		}
575 	}
576 	return err;
577 }
578 
579 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
580 {
581 	u32 nr_irqs, i;
582 	int ret;
583 
584 	mct_int_type = int_type;
585 
586 	/* This driver uses only one global timer interrupt */
587 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
588 
589 	/*
590 	 * Find out the number of local irqs specified. The local
591 	 * timer irqs are specified after the four global timer
592 	 * irqs are specified.
593 	 */
594 	nr_irqs = of_irq_count(np);
595 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
596 		mct_irqs[i] = irq_of_parse_and_map(np, i);
597 
598 	ret = exynos4_timer_resources(np, of_iomap(np, 0));
599 	if (ret)
600 		return ret;
601 
602 	ret = exynos4_clocksource_init();
603 	if (ret)
604 		return ret;
605 
606 	return exynos4_clockevent_init();
607 }
608 
609 
610 static int __init mct_init_spi(struct device_node *np)
611 {
612 	return mct_init_dt(np, MCT_INT_SPI);
613 }
614 
615 static int __init mct_init_ppi(struct device_node *np)
616 {
617 	return mct_init_dt(np, MCT_INT_PPI);
618 }
619 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
620 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
621