1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22 #include <linux/of.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/clocksource.h>
26 
27 #include <asm/localtimer.h>
28 #include <asm/mach/time.h>
29 
30 #define EXYNOS4_MCTREG(x)		(x)
31 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
32 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
33 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
34 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
35 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
36 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
37 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
38 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
39 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
40 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
41 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
42 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
43 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
44 
45 #define MCT_L_TCNTB_OFFSET		(0x00)
46 #define MCT_L_ICNTB_OFFSET		(0x08)
47 #define MCT_L_TCON_OFFSET		(0x20)
48 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
49 #define MCT_L_INT_ENB_OFFSET		(0x34)
50 #define MCT_L_WSTAT_OFFSET		(0x40)
51 #define MCT_G_TCON_START		(1 << 8)
52 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
53 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
54 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
55 #define MCT_L_TCON_INT_START		(1 << 1)
56 #define MCT_L_TCON_TIMER_START		(1 << 0)
57 
58 #define TICK_BASE_CNT	1
59 
60 enum {
61 	MCT_INT_SPI,
62 	MCT_INT_PPI
63 };
64 
65 enum {
66 	MCT_G0_IRQ,
67 	MCT_G1_IRQ,
68 	MCT_G2_IRQ,
69 	MCT_G3_IRQ,
70 	MCT_L0_IRQ,
71 	MCT_L1_IRQ,
72 	MCT_L2_IRQ,
73 	MCT_L3_IRQ,
74 	MCT_NR_IRQS,
75 };
76 
77 static void __iomem *reg_base;
78 static unsigned long clk_rate;
79 static unsigned int mct_int_type;
80 static int mct_irqs[MCT_NR_IRQS];
81 
82 struct mct_clock_event_device {
83 	struct clock_event_device *evt;
84 	unsigned long base;
85 	char name[10];
86 };
87 
88 static void exynos4_mct_write(unsigned int value, unsigned long offset)
89 {
90 	unsigned long stat_addr;
91 	u32 mask;
92 	u32 i;
93 
94 	__raw_writel(value, reg_base + offset);
95 
96 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
97 		stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
98 		switch (offset & EXYNOS4_MCT_L_MASK) {
99 		case MCT_L_TCON_OFFSET:
100 			mask = 1 << 3;		/* L_TCON write status */
101 			break;
102 		case MCT_L_ICNTB_OFFSET:
103 			mask = 1 << 1;		/* L_ICNTB write status */
104 			break;
105 		case MCT_L_TCNTB_OFFSET:
106 			mask = 1 << 0;		/* L_TCNTB write status */
107 			break;
108 		default:
109 			return;
110 		}
111 	} else {
112 		switch (offset) {
113 		case EXYNOS4_MCT_G_TCON:
114 			stat_addr = EXYNOS4_MCT_G_WSTAT;
115 			mask = 1 << 16;		/* G_TCON write status */
116 			break;
117 		case EXYNOS4_MCT_G_COMP0_L:
118 			stat_addr = EXYNOS4_MCT_G_WSTAT;
119 			mask = 1 << 0;		/* G_COMP0_L write status */
120 			break;
121 		case EXYNOS4_MCT_G_COMP0_U:
122 			stat_addr = EXYNOS4_MCT_G_WSTAT;
123 			mask = 1 << 1;		/* G_COMP0_U write status */
124 			break;
125 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
126 			stat_addr = EXYNOS4_MCT_G_WSTAT;
127 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
128 			break;
129 		case EXYNOS4_MCT_G_CNT_L:
130 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
131 			mask = 1 << 0;		/* G_CNT_L write status */
132 			break;
133 		case EXYNOS4_MCT_G_CNT_U:
134 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
135 			mask = 1 << 1;		/* G_CNT_U write status */
136 			break;
137 		default:
138 			return;
139 		}
140 	}
141 
142 	/* Wait maximum 1 ms until written values are applied */
143 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
144 		if (__raw_readl(reg_base + stat_addr) & mask) {
145 			__raw_writel(mask, reg_base + stat_addr);
146 			return;
147 		}
148 
149 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
150 }
151 
152 /* Clocksource handling */
153 static void exynos4_mct_frc_start(u32 hi, u32 lo)
154 {
155 	u32 reg;
156 
157 	exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
158 	exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
159 
160 	reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
161 	reg |= MCT_G_TCON_START;
162 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164 
165 static cycle_t exynos4_frc_read(struct clocksource *cs)
166 {
167 	unsigned int lo, hi;
168 	u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
169 
170 	do {
171 		hi = hi2;
172 		lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
173 		hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
174 	} while (hi != hi2);
175 
176 	return ((cycle_t)hi << 32) | lo;
177 }
178 
179 static void exynos4_frc_resume(struct clocksource *cs)
180 {
181 	exynos4_mct_frc_start(0, 0);
182 }
183 
184 struct clocksource mct_frc = {
185 	.name		= "mct-frc",
186 	.rating		= 400,
187 	.read		= exynos4_frc_read,
188 	.mask		= CLOCKSOURCE_MASK(64),
189 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
190 	.resume		= exynos4_frc_resume,
191 };
192 
193 static void __init exynos4_clocksource_init(void)
194 {
195 	exynos4_mct_frc_start(0, 0);
196 
197 	if (clocksource_register_hz(&mct_frc, clk_rate))
198 		panic("%s: can't register clocksource\n", mct_frc.name);
199 }
200 
201 static void exynos4_mct_comp0_stop(void)
202 {
203 	unsigned int tcon;
204 
205 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
206 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
207 
208 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
209 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
210 }
211 
212 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
213 				    unsigned long cycles)
214 {
215 	unsigned int tcon;
216 	cycle_t comp_cycle;
217 
218 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
219 
220 	if (mode == CLOCK_EVT_MODE_PERIODIC) {
221 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
222 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
223 	}
224 
225 	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
226 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
227 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
228 
229 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
230 
231 	tcon |= MCT_G_TCON_COMP0_ENABLE;
232 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
233 }
234 
235 static int exynos4_comp_set_next_event(unsigned long cycles,
236 				       struct clock_event_device *evt)
237 {
238 	exynos4_mct_comp0_start(evt->mode, cycles);
239 
240 	return 0;
241 }
242 
243 static void exynos4_comp_set_mode(enum clock_event_mode mode,
244 				  struct clock_event_device *evt)
245 {
246 	unsigned long cycles_per_jiffy;
247 	exynos4_mct_comp0_stop();
248 
249 	switch (mode) {
250 	case CLOCK_EVT_MODE_PERIODIC:
251 		cycles_per_jiffy =
252 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
253 		exynos4_mct_comp0_start(mode, cycles_per_jiffy);
254 		break;
255 
256 	case CLOCK_EVT_MODE_ONESHOT:
257 	case CLOCK_EVT_MODE_UNUSED:
258 	case CLOCK_EVT_MODE_SHUTDOWN:
259 	case CLOCK_EVT_MODE_RESUME:
260 		break;
261 	}
262 }
263 
264 static struct clock_event_device mct_comp_device = {
265 	.name		= "mct-comp",
266 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
267 	.rating		= 250,
268 	.set_next_event	= exynos4_comp_set_next_event,
269 	.set_mode	= exynos4_comp_set_mode,
270 };
271 
272 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
273 {
274 	struct clock_event_device *evt = dev_id;
275 
276 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
277 
278 	evt->event_handler(evt);
279 
280 	return IRQ_HANDLED;
281 }
282 
283 static struct irqaction mct_comp_event_irq = {
284 	.name		= "mct_comp_irq",
285 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
286 	.handler	= exynos4_mct_comp_isr,
287 	.dev_id		= &mct_comp_device,
288 };
289 
290 static void exynos4_clockevent_init(void)
291 {
292 	mct_comp_device.cpumask = cpumask_of(0);
293 	clockevents_config_and_register(&mct_comp_device, clk_rate,
294 					0xf, 0xffffffff);
295 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
296 }
297 
298 #ifdef CONFIG_LOCAL_TIMERS
299 
300 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
301 
302 /* Clock event handling */
303 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
304 {
305 	unsigned long tmp;
306 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
307 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
308 
309 	tmp = __raw_readl(reg_base + offset);
310 	if (tmp & mask) {
311 		tmp &= ~mask;
312 		exynos4_mct_write(tmp, offset);
313 	}
314 }
315 
316 static void exynos4_mct_tick_start(unsigned long cycles,
317 				   struct mct_clock_event_device *mevt)
318 {
319 	unsigned long tmp;
320 
321 	exynos4_mct_tick_stop(mevt);
322 
323 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
324 
325 	/* update interrupt count buffer */
326 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
327 
328 	/* enable MCT tick interrupt */
329 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
330 
331 	tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
332 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
333 	       MCT_L_TCON_INTERVAL_MODE;
334 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
335 }
336 
337 static int exynos4_tick_set_next_event(unsigned long cycles,
338 				       struct clock_event_device *evt)
339 {
340 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
341 
342 	exynos4_mct_tick_start(cycles, mevt);
343 
344 	return 0;
345 }
346 
347 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
348 					 struct clock_event_device *evt)
349 {
350 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
351 	unsigned long cycles_per_jiffy;
352 
353 	exynos4_mct_tick_stop(mevt);
354 
355 	switch (mode) {
356 	case CLOCK_EVT_MODE_PERIODIC:
357 		cycles_per_jiffy =
358 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
359 		exynos4_mct_tick_start(cycles_per_jiffy, mevt);
360 		break;
361 
362 	case CLOCK_EVT_MODE_ONESHOT:
363 	case CLOCK_EVT_MODE_UNUSED:
364 	case CLOCK_EVT_MODE_SHUTDOWN:
365 	case CLOCK_EVT_MODE_RESUME:
366 		break;
367 	}
368 }
369 
370 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
371 {
372 	struct clock_event_device *evt = mevt->evt;
373 
374 	/*
375 	 * This is for supporting oneshot mode.
376 	 * Mct would generate interrupt periodically
377 	 * without explicit stopping.
378 	 */
379 	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
380 		exynos4_mct_tick_stop(mevt);
381 
382 	/* Clear the MCT tick interrupt */
383 	if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
384 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
385 		return 1;
386 	} else {
387 		return 0;
388 	}
389 }
390 
391 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
392 {
393 	struct mct_clock_event_device *mevt = dev_id;
394 	struct clock_event_device *evt = mevt->evt;
395 
396 	exynos4_mct_tick_clear(mevt);
397 
398 	evt->event_handler(evt);
399 
400 	return IRQ_HANDLED;
401 }
402 
403 static struct irqaction mct_tick0_event_irq = {
404 	.name		= "mct_tick0_irq",
405 	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
406 	.handler	= exynos4_mct_tick_isr,
407 };
408 
409 static struct irqaction mct_tick1_event_irq = {
410 	.name		= "mct_tick1_irq",
411 	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
412 	.handler	= exynos4_mct_tick_isr,
413 };
414 
415 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
416 {
417 	struct mct_clock_event_device *mevt;
418 	unsigned int cpu = smp_processor_id();
419 
420 	mevt = this_cpu_ptr(&percpu_mct_tick);
421 	mevt->evt = evt;
422 
423 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
424 	sprintf(mevt->name, "mct_tick%d", cpu);
425 
426 	evt->name = mevt->name;
427 	evt->cpumask = cpumask_of(cpu);
428 	evt->set_next_event = exynos4_tick_set_next_event;
429 	evt->set_mode = exynos4_tick_set_mode;
430 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
431 	evt->rating = 450;
432 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
433 					0xf, 0x7fffffff);
434 
435 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
436 
437 	if (mct_int_type == MCT_INT_SPI) {
438 		if (cpu == 0) {
439 			mct_tick0_event_irq.dev_id = mevt;
440 			evt->irq = mct_irqs[MCT_L0_IRQ];
441 			setup_irq(evt->irq, &mct_tick0_event_irq);
442 		} else {
443 			mct_tick1_event_irq.dev_id = mevt;
444 			evt->irq = mct_irqs[MCT_L1_IRQ];
445 			setup_irq(evt->irq, &mct_tick1_event_irq);
446 			irq_set_affinity(evt->irq, cpumask_of(1));
447 		}
448 	} else {
449 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
450 	}
451 
452 	return 0;
453 }
454 
455 static void exynos4_local_timer_stop(struct clock_event_device *evt)
456 {
457 	unsigned int cpu = smp_processor_id();
458 	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
459 	if (mct_int_type == MCT_INT_SPI)
460 		if (cpu == 0)
461 			remove_irq(evt->irq, &mct_tick0_event_irq);
462 		else
463 			remove_irq(evt->irq, &mct_tick1_event_irq);
464 	else
465 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
466 }
467 
468 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
469 	.setup	= exynos4_local_timer_setup,
470 	.stop	= exynos4_local_timer_stop,
471 };
472 #endif /* CONFIG_LOCAL_TIMERS */
473 
474 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
475 {
476 	struct clk *mct_clk, *tick_clk;
477 
478 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
479 				clk_get(NULL, "fin_pll");
480 	if (IS_ERR(tick_clk))
481 		panic("%s: unable to determine tick clock rate\n", __func__);
482 	clk_rate = clk_get_rate(tick_clk);
483 
484 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
485 	if (IS_ERR(mct_clk))
486 		panic("%s: unable to retrieve mct clock instance\n", __func__);
487 	clk_prepare_enable(mct_clk);
488 
489 	reg_base = base;
490 	if (!reg_base)
491 		panic("%s: unable to ioremap mct address space\n", __func__);
492 
493 #ifdef CONFIG_LOCAL_TIMERS
494 	if (mct_int_type == MCT_INT_PPI) {
495 		int err;
496 
497 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
498 					 exynos4_mct_tick_isr, "MCT",
499 					 &percpu_mct_tick);
500 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
501 		     mct_irqs[MCT_L0_IRQ], err);
502 	}
503 
504 	local_timer_register(&exynos4_mct_tick_ops);
505 #endif /* CONFIG_LOCAL_TIMERS */
506 }
507 
508 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
509 {
510 	mct_irqs[MCT_G0_IRQ] = irq_g0;
511 	mct_irqs[MCT_L0_IRQ] = irq_l0;
512 	mct_irqs[MCT_L1_IRQ] = irq_l1;
513 	mct_int_type = MCT_INT_SPI;
514 
515 	exynos4_timer_resources(NULL, base);
516 	exynos4_clocksource_init();
517 	exynos4_clockevent_init();
518 }
519 
520 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
521 {
522 	u32 nr_irqs, i;
523 
524 	mct_int_type = int_type;
525 
526 	/* This driver uses only one global timer interrupt */
527 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
528 
529 	/*
530 	 * Find out the number of local irqs specified. The local
531 	 * timer irqs are specified after the four global timer
532 	 * irqs are specified.
533 	 */
534 #ifdef CONFIG_OF
535 	nr_irqs = of_irq_count(np);
536 #else
537 	nr_irqs = 0;
538 #endif
539 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
540 		mct_irqs[i] = irq_of_parse_and_map(np, i);
541 
542 	exynos4_timer_resources(np, of_iomap(np, 0));
543 	exynos4_clocksource_init();
544 	exynos4_clockevent_init();
545 }
546 
547 
548 static void __init mct_init_spi(struct device_node *np)
549 {
550 	return mct_init_dt(np, MCT_INT_SPI);
551 }
552 
553 static void __init mct_init_ppi(struct device_node *np)
554 {
555 	return mct_init_dt(np, MCT_INT_PPI);
556 }
557 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
558 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
559