1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 
28 #include <asm/mach/time.h>
29 
30 #define EXYNOS4_MCTREG(x)		(x)
31 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
32 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
33 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
34 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
35 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
36 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
37 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
38 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
39 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
40 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
41 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
42 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
43 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
44 
45 #define MCT_L_TCNTB_OFFSET		(0x00)
46 #define MCT_L_ICNTB_OFFSET		(0x08)
47 #define MCT_L_TCON_OFFSET		(0x20)
48 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
49 #define MCT_L_INT_ENB_OFFSET		(0x34)
50 #define MCT_L_WSTAT_OFFSET		(0x40)
51 #define MCT_G_TCON_START		(1 << 8)
52 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
53 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
54 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
55 #define MCT_L_TCON_INT_START		(1 << 1)
56 #define MCT_L_TCON_TIMER_START		(1 << 0)
57 
58 #define TICK_BASE_CNT	1
59 
60 enum {
61 	MCT_INT_SPI,
62 	MCT_INT_PPI
63 };
64 
65 enum {
66 	MCT_G0_IRQ,
67 	MCT_G1_IRQ,
68 	MCT_G2_IRQ,
69 	MCT_G3_IRQ,
70 	MCT_L0_IRQ,
71 	MCT_L1_IRQ,
72 	MCT_L2_IRQ,
73 	MCT_L3_IRQ,
74 	MCT_L4_IRQ,
75 	MCT_L5_IRQ,
76 	MCT_L6_IRQ,
77 	MCT_L7_IRQ,
78 	MCT_NR_IRQS,
79 };
80 
81 static void __iomem *reg_base;
82 static unsigned long clk_rate;
83 static unsigned int mct_int_type;
84 static int mct_irqs[MCT_NR_IRQS];
85 
86 struct mct_clock_event_device {
87 	struct clock_event_device evt;
88 	unsigned long base;
89 	char name[10];
90 };
91 
92 static void exynos4_mct_write(unsigned int value, unsigned long offset)
93 {
94 	unsigned long stat_addr;
95 	u32 mask;
96 	u32 i;
97 
98 	__raw_writel(value, reg_base + offset);
99 
100 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
101 		stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
102 		switch (offset & EXYNOS4_MCT_L_MASK) {
103 		case MCT_L_TCON_OFFSET:
104 			mask = 1 << 3;		/* L_TCON write status */
105 			break;
106 		case MCT_L_ICNTB_OFFSET:
107 			mask = 1 << 1;		/* L_ICNTB write status */
108 			break;
109 		case MCT_L_TCNTB_OFFSET:
110 			mask = 1 << 0;		/* L_TCNTB write status */
111 			break;
112 		default:
113 			return;
114 		}
115 	} else {
116 		switch (offset) {
117 		case EXYNOS4_MCT_G_TCON:
118 			stat_addr = EXYNOS4_MCT_G_WSTAT;
119 			mask = 1 << 16;		/* G_TCON write status */
120 			break;
121 		case EXYNOS4_MCT_G_COMP0_L:
122 			stat_addr = EXYNOS4_MCT_G_WSTAT;
123 			mask = 1 << 0;		/* G_COMP0_L write status */
124 			break;
125 		case EXYNOS4_MCT_G_COMP0_U:
126 			stat_addr = EXYNOS4_MCT_G_WSTAT;
127 			mask = 1 << 1;		/* G_COMP0_U write status */
128 			break;
129 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
130 			stat_addr = EXYNOS4_MCT_G_WSTAT;
131 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
132 			break;
133 		case EXYNOS4_MCT_G_CNT_L:
134 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
135 			mask = 1 << 0;		/* G_CNT_L write status */
136 			break;
137 		case EXYNOS4_MCT_G_CNT_U:
138 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
139 			mask = 1 << 1;		/* G_CNT_U write status */
140 			break;
141 		default:
142 			return;
143 		}
144 	}
145 
146 	/* Wait maximum 1 ms until written values are applied */
147 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
148 		if (__raw_readl(reg_base + stat_addr) & mask) {
149 			__raw_writel(mask, reg_base + stat_addr);
150 			return;
151 		}
152 
153 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
154 }
155 
156 /* Clocksource handling */
157 static void exynos4_mct_frc_start(u32 hi, u32 lo)
158 {
159 	u32 reg;
160 
161 	exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
162 	exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
163 
164 	reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
165 	reg |= MCT_G_TCON_START;
166 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
167 }
168 
169 static cycle_t exynos4_frc_read(struct clocksource *cs)
170 {
171 	unsigned int lo, hi;
172 	u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
173 
174 	do {
175 		hi = hi2;
176 		lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
177 		hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
178 	} while (hi != hi2);
179 
180 	return ((cycle_t)hi << 32) | lo;
181 }
182 
183 static void exynos4_frc_resume(struct clocksource *cs)
184 {
185 	exynos4_mct_frc_start(0, 0);
186 }
187 
188 struct clocksource mct_frc = {
189 	.name		= "mct-frc",
190 	.rating		= 400,
191 	.read		= exynos4_frc_read,
192 	.mask		= CLOCKSOURCE_MASK(64),
193 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
194 	.resume		= exynos4_frc_resume,
195 };
196 
197 static void __init exynos4_clocksource_init(void)
198 {
199 	exynos4_mct_frc_start(0, 0);
200 
201 	if (clocksource_register_hz(&mct_frc, clk_rate))
202 		panic("%s: can't register clocksource\n", mct_frc.name);
203 }
204 
205 static void exynos4_mct_comp0_stop(void)
206 {
207 	unsigned int tcon;
208 
209 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
210 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
211 
212 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
213 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
214 }
215 
216 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
217 				    unsigned long cycles)
218 {
219 	unsigned int tcon;
220 	cycle_t comp_cycle;
221 
222 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
223 
224 	if (mode == CLOCK_EVT_MODE_PERIODIC) {
225 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
226 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
227 	}
228 
229 	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
230 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
231 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
232 
233 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
234 
235 	tcon |= MCT_G_TCON_COMP0_ENABLE;
236 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
237 }
238 
239 static int exynos4_comp_set_next_event(unsigned long cycles,
240 				       struct clock_event_device *evt)
241 {
242 	exynos4_mct_comp0_start(evt->mode, cycles);
243 
244 	return 0;
245 }
246 
247 static void exynos4_comp_set_mode(enum clock_event_mode mode,
248 				  struct clock_event_device *evt)
249 {
250 	unsigned long cycles_per_jiffy;
251 	exynos4_mct_comp0_stop();
252 
253 	switch (mode) {
254 	case CLOCK_EVT_MODE_PERIODIC:
255 		cycles_per_jiffy =
256 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
257 		exynos4_mct_comp0_start(mode, cycles_per_jiffy);
258 		break;
259 
260 	case CLOCK_EVT_MODE_ONESHOT:
261 	case CLOCK_EVT_MODE_UNUSED:
262 	case CLOCK_EVT_MODE_SHUTDOWN:
263 	case CLOCK_EVT_MODE_RESUME:
264 		break;
265 	}
266 }
267 
268 static struct clock_event_device mct_comp_device = {
269 	.name		= "mct-comp",
270 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
271 	.rating		= 250,
272 	.set_next_event	= exynos4_comp_set_next_event,
273 	.set_mode	= exynos4_comp_set_mode,
274 };
275 
276 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
277 {
278 	struct clock_event_device *evt = dev_id;
279 
280 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
281 
282 	evt->event_handler(evt);
283 
284 	return IRQ_HANDLED;
285 }
286 
287 static struct irqaction mct_comp_event_irq = {
288 	.name		= "mct_comp_irq",
289 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
290 	.handler	= exynos4_mct_comp_isr,
291 	.dev_id		= &mct_comp_device,
292 };
293 
294 static void exynos4_clockevent_init(void)
295 {
296 	mct_comp_device.cpumask = cpumask_of(0);
297 	clockevents_config_and_register(&mct_comp_device, clk_rate,
298 					0xf, 0xffffffff);
299 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
300 }
301 
302 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
303 
304 /* Clock event handling */
305 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
306 {
307 	unsigned long tmp;
308 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
309 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
310 
311 	tmp = __raw_readl(reg_base + offset);
312 	if (tmp & mask) {
313 		tmp &= ~mask;
314 		exynos4_mct_write(tmp, offset);
315 	}
316 }
317 
318 static void exynos4_mct_tick_start(unsigned long cycles,
319 				   struct mct_clock_event_device *mevt)
320 {
321 	unsigned long tmp;
322 
323 	exynos4_mct_tick_stop(mevt);
324 
325 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
326 
327 	/* update interrupt count buffer */
328 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
329 
330 	/* enable MCT tick interrupt */
331 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
332 
333 	tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
334 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
335 	       MCT_L_TCON_INTERVAL_MODE;
336 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
337 }
338 
339 static int exynos4_tick_set_next_event(unsigned long cycles,
340 				       struct clock_event_device *evt)
341 {
342 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
343 
344 	exynos4_mct_tick_start(cycles, mevt);
345 
346 	return 0;
347 }
348 
349 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
350 					 struct clock_event_device *evt)
351 {
352 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
353 	unsigned long cycles_per_jiffy;
354 
355 	exynos4_mct_tick_stop(mevt);
356 
357 	switch (mode) {
358 	case CLOCK_EVT_MODE_PERIODIC:
359 		cycles_per_jiffy =
360 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
361 		exynos4_mct_tick_start(cycles_per_jiffy, mevt);
362 		break;
363 
364 	case CLOCK_EVT_MODE_ONESHOT:
365 	case CLOCK_EVT_MODE_UNUSED:
366 	case CLOCK_EVT_MODE_SHUTDOWN:
367 	case CLOCK_EVT_MODE_RESUME:
368 		break;
369 	}
370 }
371 
372 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
373 {
374 	struct clock_event_device *evt = &mevt->evt;
375 
376 	/*
377 	 * This is for supporting oneshot mode.
378 	 * Mct would generate interrupt periodically
379 	 * without explicit stopping.
380 	 */
381 	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
382 		exynos4_mct_tick_stop(mevt);
383 
384 	/* Clear the MCT tick interrupt */
385 	if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
386 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
387 		return 1;
388 	} else {
389 		return 0;
390 	}
391 }
392 
393 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
394 {
395 	struct mct_clock_event_device *mevt = dev_id;
396 	struct clock_event_device *evt = &mevt->evt;
397 
398 	exynos4_mct_tick_clear(mevt);
399 
400 	evt->event_handler(evt);
401 
402 	return IRQ_HANDLED;
403 }
404 
405 static int exynos4_local_timer_setup(struct clock_event_device *evt)
406 {
407 	struct mct_clock_event_device *mevt;
408 	unsigned int cpu = smp_processor_id();
409 
410 	mevt = container_of(evt, struct mct_clock_event_device, evt);
411 
412 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
413 	sprintf(mevt->name, "mct_tick%d", cpu);
414 
415 	evt->name = mevt->name;
416 	evt->cpumask = cpumask_of(cpu);
417 	evt->set_next_event = exynos4_tick_set_next_event;
418 	evt->set_mode = exynos4_tick_set_mode;
419 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
420 	evt->rating = 450;
421 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
422 					0xf, 0x7fffffff);
423 
424 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
425 
426 	if (mct_int_type == MCT_INT_SPI) {
427 		evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
428 		if (request_irq(evt->irq, exynos4_mct_tick_isr,
429 				IRQF_TIMER | IRQF_NOBALANCING,
430 				evt->name, mevt)) {
431 			pr_err("exynos-mct: cannot register IRQ %d\n",
432 				evt->irq);
433 			return -EIO;
434 		}
435 	} else {
436 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
437 	}
438 
439 	return 0;
440 }
441 
442 static void exynos4_local_timer_stop(struct clock_event_device *evt)
443 {
444 	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
445 	if (mct_int_type == MCT_INT_SPI)
446 		free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
447 	else
448 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
449 }
450 
451 static int exynos4_mct_cpu_notify(struct notifier_block *self,
452 					   unsigned long action, void *hcpu)
453 {
454 	struct mct_clock_event_device *mevt;
455 	unsigned int cpu;
456 
457 	/*
458 	 * Grab cpu pointer in each case to avoid spurious
459 	 * preemptible warnings
460 	 */
461 	switch (action & ~CPU_TASKS_FROZEN) {
462 	case CPU_STARTING:
463 		mevt = this_cpu_ptr(&percpu_mct_tick);
464 		exynos4_local_timer_setup(&mevt->evt);
465 		break;
466 	case CPU_ONLINE:
467 		cpu = (unsigned long)hcpu;
468 		if (mct_int_type == MCT_INT_SPI)
469 			irq_set_affinity(mct_irqs[MCT_L0_IRQ + cpu],
470 						cpumask_of(cpu));
471 		break;
472 	case CPU_DYING:
473 		mevt = this_cpu_ptr(&percpu_mct_tick);
474 		exynos4_local_timer_stop(&mevt->evt);
475 		break;
476 	}
477 
478 	return NOTIFY_OK;
479 }
480 
481 static struct notifier_block exynos4_mct_cpu_nb = {
482 	.notifier_call = exynos4_mct_cpu_notify,
483 };
484 
485 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
486 {
487 	int err;
488 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
489 	struct clk *mct_clk, *tick_clk;
490 
491 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
492 				clk_get(NULL, "fin_pll");
493 	if (IS_ERR(tick_clk))
494 		panic("%s: unable to determine tick clock rate\n", __func__);
495 	clk_rate = clk_get_rate(tick_clk);
496 
497 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
498 	if (IS_ERR(mct_clk))
499 		panic("%s: unable to retrieve mct clock instance\n", __func__);
500 	clk_prepare_enable(mct_clk);
501 
502 	reg_base = base;
503 	if (!reg_base)
504 		panic("%s: unable to ioremap mct address space\n", __func__);
505 
506 	if (mct_int_type == MCT_INT_PPI) {
507 
508 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
509 					 exynos4_mct_tick_isr, "MCT",
510 					 &percpu_mct_tick);
511 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
512 		     mct_irqs[MCT_L0_IRQ], err);
513 	} else {
514 		irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
515 	}
516 
517 	err = register_cpu_notifier(&exynos4_mct_cpu_nb);
518 	if (err)
519 		goto out_irq;
520 
521 	/* Immediately configure the timer on the boot CPU */
522 	exynos4_local_timer_setup(&mevt->evt);
523 	return;
524 
525 out_irq:
526 	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
527 }
528 
529 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
530 {
531 	mct_irqs[MCT_G0_IRQ] = irq_g0;
532 	mct_irqs[MCT_L0_IRQ] = irq_l0;
533 	mct_irqs[MCT_L1_IRQ] = irq_l1;
534 	mct_int_type = MCT_INT_SPI;
535 
536 	exynos4_timer_resources(NULL, base);
537 	exynos4_clocksource_init();
538 	exynos4_clockevent_init();
539 }
540 
541 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
542 {
543 	u32 nr_irqs, i;
544 
545 	mct_int_type = int_type;
546 
547 	/* This driver uses only one global timer interrupt */
548 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
549 
550 	/*
551 	 * Find out the number of local irqs specified. The local
552 	 * timer irqs are specified after the four global timer
553 	 * irqs are specified.
554 	 */
555 #ifdef CONFIG_OF
556 	nr_irqs = of_irq_count(np);
557 #else
558 	nr_irqs = 0;
559 #endif
560 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
561 		mct_irqs[i] = irq_of_parse_and_map(np, i);
562 
563 	exynos4_timer_resources(np, of_iomap(np, 0));
564 	exynos4_clocksource_init();
565 	exynos4_clockevent_init();
566 }
567 
568 
569 static void __init mct_init_spi(struct device_node *np)
570 {
571 	return mct_init_dt(np, MCT_INT_SPI);
572 }
573 
574 static void __init mct_init_ppi(struct device_node *np)
575 {
576 	return mct_init_dt(np, MCT_INT_PPI);
577 }
578 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
579 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
580