1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28 
29 #define EXYNOS4_MCTREG(x)		(x)
30 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
43 
44 #define MCT_L_TCNTB_OFFSET		(0x00)
45 #define MCT_L_ICNTB_OFFSET		(0x08)
46 #define MCT_L_TCON_OFFSET		(0x20)
47 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
48 #define MCT_L_INT_ENB_OFFSET		(0x34)
49 #define MCT_L_WSTAT_OFFSET		(0x40)
50 #define MCT_G_TCON_START		(1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
54 #define MCT_L_TCON_INT_START		(1 << 1)
55 #define MCT_L_TCON_TIMER_START		(1 << 0)
56 
57 #define TICK_BASE_CNT	1
58 
59 enum {
60 	MCT_INT_SPI,
61 	MCT_INT_PPI
62 };
63 
64 enum {
65 	MCT_G0_IRQ,
66 	MCT_G1_IRQ,
67 	MCT_G2_IRQ,
68 	MCT_G3_IRQ,
69 	MCT_L0_IRQ,
70 	MCT_L1_IRQ,
71 	MCT_L2_IRQ,
72 	MCT_L3_IRQ,
73 	MCT_L4_IRQ,
74 	MCT_L5_IRQ,
75 	MCT_L6_IRQ,
76 	MCT_L7_IRQ,
77 	MCT_NR_IRQS,
78 };
79 
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84 
85 struct mct_clock_event_device {
86 	struct clock_event_device evt;
87 	unsigned long base;
88 	char name[10];
89 };
90 
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93 	unsigned long stat_addr;
94 	u32 mask;
95 	u32 i;
96 
97 	__raw_writel(value, reg_base + offset);
98 
99 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100 		stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 		switch (offset & EXYNOS4_MCT_L_MASK) {
102 		case MCT_L_TCON_OFFSET:
103 			mask = 1 << 3;		/* L_TCON write status */
104 			break;
105 		case MCT_L_ICNTB_OFFSET:
106 			mask = 1 << 1;		/* L_ICNTB write status */
107 			break;
108 		case MCT_L_TCNTB_OFFSET:
109 			mask = 1 << 0;		/* L_TCNTB write status */
110 			break;
111 		default:
112 			return;
113 		}
114 	} else {
115 		switch (offset) {
116 		case EXYNOS4_MCT_G_TCON:
117 			stat_addr = EXYNOS4_MCT_G_WSTAT;
118 			mask = 1 << 16;		/* G_TCON write status */
119 			break;
120 		case EXYNOS4_MCT_G_COMP0_L:
121 			stat_addr = EXYNOS4_MCT_G_WSTAT;
122 			mask = 1 << 0;		/* G_COMP0_L write status */
123 			break;
124 		case EXYNOS4_MCT_G_COMP0_U:
125 			stat_addr = EXYNOS4_MCT_G_WSTAT;
126 			mask = 1 << 1;		/* G_COMP0_U write status */
127 			break;
128 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129 			stat_addr = EXYNOS4_MCT_G_WSTAT;
130 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
131 			break;
132 		case EXYNOS4_MCT_G_CNT_L:
133 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 			mask = 1 << 0;		/* G_CNT_L write status */
135 			break;
136 		case EXYNOS4_MCT_G_CNT_U:
137 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 			mask = 1 << 1;		/* G_CNT_U write status */
139 			break;
140 		default:
141 			return;
142 		}
143 	}
144 
145 	/* Wait maximum 1 ms until written values are applied */
146 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147 		if (__raw_readl(reg_base + stat_addr) & mask) {
148 			__raw_writel(mask, reg_base + stat_addr);
149 			return;
150 		}
151 
152 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154 
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(u32 hi, u32 lo)
157 {
158 	u32 reg;
159 
160 	exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
161 	exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
162 
163 	reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
164 	reg |= MCT_G_TCON_START;
165 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
166 }
167 
168 static cycle_t exynos4_frc_read(struct clocksource *cs)
169 {
170 	unsigned int lo, hi;
171 	u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
172 
173 	do {
174 		hi = hi2;
175 		lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
176 		hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
177 	} while (hi != hi2);
178 
179 	return ((cycle_t)hi << 32) | lo;
180 }
181 
182 static void exynos4_frc_resume(struct clocksource *cs)
183 {
184 	exynos4_mct_frc_start(0, 0);
185 }
186 
187 struct clocksource mct_frc = {
188 	.name		= "mct-frc",
189 	.rating		= 400,
190 	.read		= exynos4_frc_read,
191 	.mask		= CLOCKSOURCE_MASK(64),
192 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
193 	.resume		= exynos4_frc_resume,
194 };
195 
196 static u64 notrace exynos4_read_sched_clock(void)
197 {
198 	return exynos4_frc_read(&mct_frc);
199 }
200 
201 static void __init exynos4_clocksource_init(void)
202 {
203 	exynos4_mct_frc_start(0, 0);
204 
205 	if (clocksource_register_hz(&mct_frc, clk_rate))
206 		panic("%s: can't register clocksource\n", mct_frc.name);
207 
208 	sched_clock_register(exynos4_read_sched_clock, 64, clk_rate);
209 }
210 
211 static void exynos4_mct_comp0_stop(void)
212 {
213 	unsigned int tcon;
214 
215 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
216 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
217 
218 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
219 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
220 }
221 
222 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
223 				    unsigned long cycles)
224 {
225 	unsigned int tcon;
226 	cycle_t comp_cycle;
227 
228 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
229 
230 	if (mode == CLOCK_EVT_MODE_PERIODIC) {
231 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
232 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
233 	}
234 
235 	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
236 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
237 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
238 
239 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
240 
241 	tcon |= MCT_G_TCON_COMP0_ENABLE;
242 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
243 }
244 
245 static int exynos4_comp_set_next_event(unsigned long cycles,
246 				       struct clock_event_device *evt)
247 {
248 	exynos4_mct_comp0_start(evt->mode, cycles);
249 
250 	return 0;
251 }
252 
253 static void exynos4_comp_set_mode(enum clock_event_mode mode,
254 				  struct clock_event_device *evt)
255 {
256 	unsigned long cycles_per_jiffy;
257 	exynos4_mct_comp0_stop();
258 
259 	switch (mode) {
260 	case CLOCK_EVT_MODE_PERIODIC:
261 		cycles_per_jiffy =
262 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
263 		exynos4_mct_comp0_start(mode, cycles_per_jiffy);
264 		break;
265 
266 	case CLOCK_EVT_MODE_ONESHOT:
267 	case CLOCK_EVT_MODE_UNUSED:
268 	case CLOCK_EVT_MODE_SHUTDOWN:
269 	case CLOCK_EVT_MODE_RESUME:
270 		break;
271 	}
272 }
273 
274 static struct clock_event_device mct_comp_device = {
275 	.name		= "mct-comp",
276 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
277 	.rating		= 250,
278 	.set_next_event	= exynos4_comp_set_next_event,
279 	.set_mode	= exynos4_comp_set_mode,
280 };
281 
282 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
283 {
284 	struct clock_event_device *evt = dev_id;
285 
286 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
287 
288 	evt->event_handler(evt);
289 
290 	return IRQ_HANDLED;
291 }
292 
293 static struct irqaction mct_comp_event_irq = {
294 	.name		= "mct_comp_irq",
295 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
296 	.handler	= exynos4_mct_comp_isr,
297 	.dev_id		= &mct_comp_device,
298 };
299 
300 static void exynos4_clockevent_init(void)
301 {
302 	mct_comp_device.cpumask = cpumask_of(0);
303 	clockevents_config_and_register(&mct_comp_device, clk_rate,
304 					0xf, 0xffffffff);
305 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
306 }
307 
308 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
309 
310 /* Clock event handling */
311 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
312 {
313 	unsigned long tmp;
314 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
315 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
316 
317 	tmp = __raw_readl(reg_base + offset);
318 	if (tmp & mask) {
319 		tmp &= ~mask;
320 		exynos4_mct_write(tmp, offset);
321 	}
322 }
323 
324 static void exynos4_mct_tick_start(unsigned long cycles,
325 				   struct mct_clock_event_device *mevt)
326 {
327 	unsigned long tmp;
328 
329 	exynos4_mct_tick_stop(mevt);
330 
331 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
332 
333 	/* update interrupt count buffer */
334 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
335 
336 	/* enable MCT tick interrupt */
337 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
338 
339 	tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
340 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
341 	       MCT_L_TCON_INTERVAL_MODE;
342 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
343 }
344 
345 static int exynos4_tick_set_next_event(unsigned long cycles,
346 				       struct clock_event_device *evt)
347 {
348 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
349 
350 	exynos4_mct_tick_start(cycles, mevt);
351 
352 	return 0;
353 }
354 
355 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
356 					 struct clock_event_device *evt)
357 {
358 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
359 	unsigned long cycles_per_jiffy;
360 
361 	exynos4_mct_tick_stop(mevt);
362 
363 	switch (mode) {
364 	case CLOCK_EVT_MODE_PERIODIC:
365 		cycles_per_jiffy =
366 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
367 		exynos4_mct_tick_start(cycles_per_jiffy, mevt);
368 		break;
369 
370 	case CLOCK_EVT_MODE_ONESHOT:
371 	case CLOCK_EVT_MODE_UNUSED:
372 	case CLOCK_EVT_MODE_SHUTDOWN:
373 	case CLOCK_EVT_MODE_RESUME:
374 		break;
375 	}
376 }
377 
378 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
379 {
380 	struct clock_event_device *evt = &mevt->evt;
381 
382 	/*
383 	 * This is for supporting oneshot mode.
384 	 * Mct would generate interrupt periodically
385 	 * without explicit stopping.
386 	 */
387 	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
388 		exynos4_mct_tick_stop(mevt);
389 
390 	/* Clear the MCT tick interrupt */
391 	if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
392 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
393 		return 1;
394 	} else {
395 		return 0;
396 	}
397 }
398 
399 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
400 {
401 	struct mct_clock_event_device *mevt = dev_id;
402 	struct clock_event_device *evt = &mevt->evt;
403 
404 	exynos4_mct_tick_clear(mevt);
405 
406 	evt->event_handler(evt);
407 
408 	return IRQ_HANDLED;
409 }
410 
411 static int exynos4_local_timer_setup(struct clock_event_device *evt)
412 {
413 	struct mct_clock_event_device *mevt;
414 	unsigned int cpu = smp_processor_id();
415 
416 	mevt = container_of(evt, struct mct_clock_event_device, evt);
417 
418 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
419 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
420 
421 	evt->name = mevt->name;
422 	evt->cpumask = cpumask_of(cpu);
423 	evt->set_next_event = exynos4_tick_set_next_event;
424 	evt->set_mode = exynos4_tick_set_mode;
425 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
426 	evt->rating = 450;
427 
428 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
429 
430 	if (mct_int_type == MCT_INT_SPI) {
431 		evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
432 		if (request_irq(evt->irq, exynos4_mct_tick_isr,
433 				IRQF_TIMER | IRQF_NOBALANCING,
434 				evt->name, mevt)) {
435 			pr_err("exynos-mct: cannot register IRQ %d\n",
436 				evt->irq);
437 			return -EIO;
438 		}
439 		irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
440 	} else {
441 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
442 	}
443 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
444 					0xf, 0x7fffffff);
445 
446 	return 0;
447 }
448 
449 static void exynos4_local_timer_stop(struct clock_event_device *evt)
450 {
451 	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
452 	if (mct_int_type == MCT_INT_SPI)
453 		free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
454 	else
455 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
456 }
457 
458 static int exynos4_mct_cpu_notify(struct notifier_block *self,
459 					   unsigned long action, void *hcpu)
460 {
461 	struct mct_clock_event_device *mevt;
462 
463 	/*
464 	 * Grab cpu pointer in each case to avoid spurious
465 	 * preemptible warnings
466 	 */
467 	switch (action & ~CPU_TASKS_FROZEN) {
468 	case CPU_STARTING:
469 		mevt = this_cpu_ptr(&percpu_mct_tick);
470 		exynos4_local_timer_setup(&mevt->evt);
471 		break;
472 	case CPU_DYING:
473 		mevt = this_cpu_ptr(&percpu_mct_tick);
474 		exynos4_local_timer_stop(&mevt->evt);
475 		break;
476 	}
477 
478 	return NOTIFY_OK;
479 }
480 
481 static struct notifier_block exynos4_mct_cpu_nb = {
482 	.notifier_call = exynos4_mct_cpu_notify,
483 };
484 
485 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
486 {
487 	int err;
488 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
489 	struct clk *mct_clk, *tick_clk;
490 
491 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
492 				clk_get(NULL, "fin_pll");
493 	if (IS_ERR(tick_clk))
494 		panic("%s: unable to determine tick clock rate\n", __func__);
495 	clk_rate = clk_get_rate(tick_clk);
496 
497 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
498 	if (IS_ERR(mct_clk))
499 		panic("%s: unable to retrieve mct clock instance\n", __func__);
500 	clk_prepare_enable(mct_clk);
501 
502 	reg_base = base;
503 	if (!reg_base)
504 		panic("%s: unable to ioremap mct address space\n", __func__);
505 
506 	if (mct_int_type == MCT_INT_PPI) {
507 
508 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
509 					 exynos4_mct_tick_isr, "MCT",
510 					 &percpu_mct_tick);
511 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
512 		     mct_irqs[MCT_L0_IRQ], err);
513 	} else {
514 		irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
515 	}
516 
517 	err = register_cpu_notifier(&exynos4_mct_cpu_nb);
518 	if (err)
519 		goto out_irq;
520 
521 	/* Immediately configure the timer on the boot CPU */
522 	exynos4_local_timer_setup(&mevt->evt);
523 	return;
524 
525 out_irq:
526 	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
527 }
528 
529 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
530 {
531 	mct_irqs[MCT_G0_IRQ] = irq_g0;
532 	mct_irqs[MCT_L0_IRQ] = irq_l0;
533 	mct_irqs[MCT_L1_IRQ] = irq_l1;
534 	mct_int_type = MCT_INT_SPI;
535 
536 	exynos4_timer_resources(NULL, base);
537 	exynos4_clocksource_init();
538 	exynos4_clockevent_init();
539 }
540 
541 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
542 {
543 	u32 nr_irqs, i;
544 
545 	mct_int_type = int_type;
546 
547 	/* This driver uses only one global timer interrupt */
548 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
549 
550 	/*
551 	 * Find out the number of local irqs specified. The local
552 	 * timer irqs are specified after the four global timer
553 	 * irqs are specified.
554 	 */
555 #ifdef CONFIG_OF
556 	nr_irqs = of_irq_count(np);
557 #else
558 	nr_irqs = 0;
559 #endif
560 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
561 		mct_irqs[i] = irq_of_parse_and_map(np, i);
562 
563 	exynos4_timer_resources(np, of_iomap(np, 0));
564 	exynos4_clocksource_init();
565 	exynos4_clockevent_init();
566 }
567 
568 
569 static void __init mct_init_spi(struct device_node *np)
570 {
571 	return mct_init_dt(np, MCT_INT_SPI);
572 }
573 
574 static void __init mct_init_ppi(struct device_node *np)
575 {
576 	return mct_init_dt(np, MCT_INT_PPI);
577 }
578 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
579 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
580