xref: /openbmc/linux/drivers/clocksource/dw_apb_timer.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * (C) Copyright 2009 Intel Corporation
3  * Author: Jacob Pan (jacob.jun.pan@intel.com)
4  *
5  * Shared with ARM platforms, Jamie Iles, Picochip 2011
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Support for the Synopsys DesignWare APB Timers.
12  */
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 
21 #define APBT_MIN_PERIOD			4
22 #define APBT_MIN_DELTA_USEC		200
23 
24 #define APBTMR_N_LOAD_COUNT		0x00
25 #define APBTMR_N_CURRENT_VALUE		0x04
26 #define APBTMR_N_CONTROL		0x08
27 #define APBTMR_N_EOI			0x0c
28 #define APBTMR_N_INT_STATUS		0x10
29 
30 #define APBTMRS_INT_STATUS		0xa0
31 #define APBTMRS_EOI			0xa4
32 #define APBTMRS_RAW_INT_STATUS		0xa8
33 #define APBTMRS_COMP_VERSION		0xac
34 
35 #define APBTMR_CONTROL_ENABLE		(1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC	(1 << 1)
38 #define APBTMR_CONTROL_INT		(1 << 2)
39 
40 static inline struct dw_apb_clock_event_device *
41 ced_to_dw_apb_ced(struct clock_event_device *evt)
42 {
43 	return container_of(evt, struct dw_apb_clock_event_device, ced);
44 }
45 
46 static inline struct dw_apb_clocksource *
47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48 {
49 	return container_of(cs, struct dw_apb_clocksource, cs);
50 }
51 
52 static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53 {
54 	return readl(timer->base + offs);
55 }
56 
57 static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
58 			unsigned long offs)
59 {
60 	writel(val, timer->base + offs);
61 }
62 
63 static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
64 {
65 	return readl_relaxed(timer->base + offs);
66 }
67 
68 static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
69 			unsigned long offs)
70 {
71 	writel_relaxed(val, timer->base + offs);
72 }
73 
74 static void apbt_disable_int(struct dw_apb_timer *timer)
75 {
76 	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
77 
78 	ctrl |= APBTMR_CONTROL_INT;
79 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
80 }
81 
82 /**
83  * dw_apb_clockevent_pause() - stop the clock_event_device from running
84  *
85  * @dw_ced:	The APB clock to stop generating events.
86  */
87 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
88 {
89 	disable_irq(dw_ced->timer.irq);
90 	apbt_disable_int(&dw_ced->timer);
91 }
92 
93 static void apbt_eoi(struct dw_apb_timer *timer)
94 {
95 	apbt_readl_relaxed(timer, APBTMR_N_EOI);
96 }
97 
98 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
99 {
100 	struct clock_event_device *evt = data;
101 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
102 
103 	if (!evt->event_handler) {
104 		pr_info("Spurious APBT timer interrupt %d\n", irq);
105 		return IRQ_NONE;
106 	}
107 
108 	if (dw_ced->eoi)
109 		dw_ced->eoi(&dw_ced->timer);
110 
111 	evt->event_handler(evt);
112 	return IRQ_HANDLED;
113 }
114 
115 static void apbt_enable_int(struct dw_apb_timer *timer)
116 {
117 	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
118 	/* clear pending intr */
119 	apbt_readl(timer, APBTMR_N_EOI);
120 	ctrl &= ~APBTMR_CONTROL_INT;
121 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
122 }
123 
124 static int apbt_shutdown(struct clock_event_device *evt)
125 {
126 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
127 	u32 ctrl;
128 
129 	pr_debug("%s CPU %d state=shutdown\n", __func__,
130 		 cpumask_first(evt->cpumask));
131 
132 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
133 	ctrl &= ~APBTMR_CONTROL_ENABLE;
134 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135 	return 0;
136 }
137 
138 static int apbt_set_oneshot(struct clock_event_device *evt)
139 {
140 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
141 	u32 ctrl;
142 
143 	pr_debug("%s CPU %d state=oneshot\n", __func__,
144 		 cpumask_first(evt->cpumask));
145 
146 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
147 	/*
148 	 * set free running mode, this mode will let timer reload max
149 	 * timeout which will give time (3min on 25MHz clock) to rearm
150 	 * the next event, therefore emulate the one-shot mode.
151 	 */
152 	ctrl &= ~APBTMR_CONTROL_ENABLE;
153 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
154 
155 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
156 	/* write again to set free running mode */
157 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
158 
159 	/*
160 	 * DW APB p. 46, load counter with all 1s before starting free
161 	 * running mode.
162 	 */
163 	apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
164 	ctrl &= ~APBTMR_CONTROL_INT;
165 	ctrl |= APBTMR_CONTROL_ENABLE;
166 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
167 	return 0;
168 }
169 
170 static int apbt_set_periodic(struct clock_event_device *evt)
171 {
172 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
173 	unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
174 	u32 ctrl;
175 
176 	pr_debug("%s CPU %d state=periodic\n", __func__,
177 		 cpumask_first(evt->cpumask));
178 
179 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
180 	ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
181 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
182 	/*
183 	 * DW APB p. 46, have to disable timer before load counter,
184 	 * may cause sync problem.
185 	 */
186 	ctrl &= ~APBTMR_CONTROL_ENABLE;
187 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
188 	udelay(1);
189 	pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
190 	apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
191 	ctrl |= APBTMR_CONTROL_ENABLE;
192 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193 	return 0;
194 }
195 
196 static int apbt_resume(struct clock_event_device *evt)
197 {
198 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
199 
200 	pr_debug("%s CPU %d state=resume\n", __func__,
201 		 cpumask_first(evt->cpumask));
202 
203 	apbt_enable_int(&dw_ced->timer);
204 	return 0;
205 }
206 
207 static int apbt_next_event(unsigned long delta,
208 			   struct clock_event_device *evt)
209 {
210 	u32 ctrl;
211 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
212 
213 	/* Disable timer */
214 	ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
215 	ctrl &= ~APBTMR_CONTROL_ENABLE;
216 	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
217 	/* write new count */
218 	apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
219 	ctrl |= APBTMR_CONTROL_ENABLE;
220 	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
221 
222 	return 0;
223 }
224 
225 /**
226  * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
227  *
228  * @cpu:	The CPU the events will be targeted at.
229  * @name:	The name used for the timer and the IRQ for it.
230  * @rating:	The rating to give the timer.
231  * @base:	I/O base for the timer registers.
232  * @irq:	The interrupt number to use for the timer.
233  * @freq:	The frequency that the timer counts at.
234  *
235  * This creates a clock_event_device for using with the generic clock layer
236  * but does not start and register it.  This should be done with
237  * dw_apb_clockevent_register() as the next step.  If this is the first time
238  * it has been called for a timer then the IRQ will be requested, if not it
239  * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
240  * releasing the IRQ.
241  */
242 struct dw_apb_clock_event_device *
243 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
244 		       void __iomem *base, int irq, unsigned long freq)
245 {
246 	struct dw_apb_clock_event_device *dw_ced =
247 		kzalloc(sizeof(*dw_ced), GFP_KERNEL);
248 	int err;
249 
250 	if (!dw_ced)
251 		return NULL;
252 
253 	dw_ced->timer.base = base;
254 	dw_ced->timer.irq = irq;
255 	dw_ced->timer.freq = freq;
256 
257 	clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
258 	dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
259 						       &dw_ced->ced);
260 	dw_ced->ced.max_delta_ticks = 0x7fffffff;
261 	dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
262 	dw_ced->ced.min_delta_ticks = 5000;
263 	dw_ced->ced.cpumask = cpumask_of(cpu);
264 	dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
265 				CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
266 	dw_ced->ced.set_state_shutdown = apbt_shutdown;
267 	dw_ced->ced.set_state_periodic = apbt_set_periodic;
268 	dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
269 	dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
270 	dw_ced->ced.tick_resume = apbt_resume;
271 	dw_ced->ced.set_next_event = apbt_next_event;
272 	dw_ced->ced.irq = dw_ced->timer.irq;
273 	dw_ced->ced.rating = rating;
274 	dw_ced->ced.name = name;
275 
276 	dw_ced->irqaction.name		= dw_ced->ced.name;
277 	dw_ced->irqaction.handler	= dw_apb_clockevent_irq;
278 	dw_ced->irqaction.dev_id	= &dw_ced->ced;
279 	dw_ced->irqaction.irq		= irq;
280 	dw_ced->irqaction.flags		= IRQF_TIMER | IRQF_IRQPOLL |
281 					  IRQF_NOBALANCING;
282 
283 	dw_ced->eoi = apbt_eoi;
284 	err = setup_irq(irq, &dw_ced->irqaction);
285 	if (err) {
286 		pr_err("failed to request timer irq\n");
287 		kfree(dw_ced);
288 		dw_ced = NULL;
289 	}
290 
291 	return dw_ced;
292 }
293 
294 /**
295  * dw_apb_clockevent_resume() - resume a clock that has been paused.
296  *
297  * @dw_ced:	The APB clock to resume.
298  */
299 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
300 {
301 	enable_irq(dw_ced->timer.irq);
302 }
303 
304 /**
305  * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
306  *
307  * @dw_ced:	The APB clock to stop generating the events.
308  */
309 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
310 {
311 	free_irq(dw_ced->timer.irq, &dw_ced->ced);
312 }
313 
314 /**
315  * dw_apb_clockevent_register() - register the clock with the generic layer
316  *
317  * @dw_ced:	The APB clock to register as a clock_event_device.
318  */
319 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
320 {
321 	apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
322 	clockevents_register_device(&dw_ced->ced);
323 	apbt_enable_int(&dw_ced->timer);
324 }
325 
326 /**
327  * dw_apb_clocksource_start() - start the clocksource counting.
328  *
329  * @dw_cs:	The clocksource to start.
330  *
331  * This is used to start the clocksource before registration and can be used
332  * to enable calibration of timers.
333  */
334 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
335 {
336 	/*
337 	 * start count down from 0xffff_ffff. this is done by toggling the
338 	 * enable bit then load initial load count to ~0.
339 	 */
340 	u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
341 
342 	ctrl &= ~APBTMR_CONTROL_ENABLE;
343 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
344 	apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
345 	/* enable, mask interrupt */
346 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
347 	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
348 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
349 	/* read it once to get cached counter value initialized */
350 	dw_apb_clocksource_read(dw_cs);
351 }
352 
353 static u64 __apbt_read_clocksource(struct clocksource *cs)
354 {
355 	u32 current_count;
356 	struct dw_apb_clocksource *dw_cs =
357 		clocksource_to_dw_apb_clocksource(cs);
358 
359 	current_count = apbt_readl_relaxed(&dw_cs->timer,
360 					APBTMR_N_CURRENT_VALUE);
361 
362 	return (u64)~current_count;
363 }
364 
365 static void apbt_restart_clocksource(struct clocksource *cs)
366 {
367 	struct dw_apb_clocksource *dw_cs =
368 		clocksource_to_dw_apb_clocksource(cs);
369 
370 	dw_apb_clocksource_start(dw_cs);
371 }
372 
373 /**
374  * dw_apb_clocksource_init() - use an APB timer as a clocksource.
375  *
376  * @rating:	The rating to give the clocksource.
377  * @name:	The name for the clocksource.
378  * @base:	The I/O base for the timer registers.
379  * @freq:	The frequency that the timer counts at.
380  *
381  * This creates a clocksource using an APB timer but does not yet register it
382  * with the clocksource system.  This should be done with
383  * dw_apb_clocksource_register() as the next step.
384  */
385 struct dw_apb_clocksource *
386 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
387 			unsigned long freq)
388 {
389 	struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
390 
391 	if (!dw_cs)
392 		return NULL;
393 
394 	dw_cs->timer.base = base;
395 	dw_cs->timer.freq = freq;
396 	dw_cs->cs.name = name;
397 	dw_cs->cs.rating = rating;
398 	dw_cs->cs.read = __apbt_read_clocksource;
399 	dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
400 	dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
401 	dw_cs->cs.resume = apbt_restart_clocksource;
402 
403 	return dw_cs;
404 }
405 
406 /**
407  * dw_apb_clocksource_register() - register the APB clocksource.
408  *
409  * @dw_cs:	The clocksource to register.
410  */
411 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
412 {
413 	clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
414 }
415 
416 /**
417  * dw_apb_clocksource_read() - read the current value of a clocksource.
418  *
419  * @dw_cs:	The clocksource to read.
420  */
421 u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
422 {
423 	return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
424 }
425