xref: /openbmc/linux/drivers/clocksource/dw_apb_timer.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * (C) Copyright 2009 Intel Corporation
3  * Author: Jacob Pan (jacob.jun.pan@intel.com)
4  *
5  * Shared with ARM platforms, Jamie Iles, Picochip 2011
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Support for the Synopsys DesignWare APB Timers.
12  */
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 
21 #define APBT_MIN_PERIOD			4
22 #define APBT_MIN_DELTA_USEC		200
23 
24 #define APBTMR_N_LOAD_COUNT		0x00
25 #define APBTMR_N_CURRENT_VALUE		0x04
26 #define APBTMR_N_CONTROL		0x08
27 #define APBTMR_N_EOI			0x0c
28 #define APBTMR_N_INT_STATUS		0x10
29 
30 #define APBTMRS_INT_STATUS		0xa0
31 #define APBTMRS_EOI			0xa4
32 #define APBTMRS_RAW_INT_STATUS		0xa8
33 #define APBTMRS_COMP_VERSION		0xac
34 
35 #define APBTMR_CONTROL_ENABLE		(1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC	(1 << 1)
38 #define APBTMR_CONTROL_INT		(1 << 2)
39 
40 static inline struct dw_apb_clock_event_device *
41 ced_to_dw_apb_ced(struct clock_event_device *evt)
42 {
43 	return container_of(evt, struct dw_apb_clock_event_device, ced);
44 }
45 
46 static inline struct dw_apb_clocksource *
47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48 {
49 	return container_of(cs, struct dw_apb_clocksource, cs);
50 }
51 
52 static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53 {
54 	return readl(timer->base + offs);
55 }
56 
57 static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
58 		 unsigned long offs)
59 {
60 	writel(val, timer->base + offs);
61 }
62 
63 static void apbt_disable_int(struct dw_apb_timer *timer)
64 {
65 	unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
66 
67 	ctrl |= APBTMR_CONTROL_INT;
68 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
69 }
70 
71 /**
72  * dw_apb_clockevent_pause() - stop the clock_event_device from running
73  *
74  * @dw_ced:	The APB clock to stop generating events.
75  */
76 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
77 {
78 	disable_irq(dw_ced->timer.irq);
79 	apbt_disable_int(&dw_ced->timer);
80 }
81 
82 static void apbt_eoi(struct dw_apb_timer *timer)
83 {
84 	apbt_readl(timer, APBTMR_N_EOI);
85 }
86 
87 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
88 {
89 	struct clock_event_device *evt = data;
90 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
91 
92 	if (!evt->event_handler) {
93 		pr_info("Spurious APBT timer interrupt %d", irq);
94 		return IRQ_NONE;
95 	}
96 
97 	if (dw_ced->eoi)
98 		dw_ced->eoi(&dw_ced->timer);
99 
100 	evt->event_handler(evt);
101 	return IRQ_HANDLED;
102 }
103 
104 static void apbt_enable_int(struct dw_apb_timer *timer)
105 {
106 	unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
107 	/* clear pending intr */
108 	apbt_readl(timer, APBTMR_N_EOI);
109 	ctrl &= ~APBTMR_CONTROL_INT;
110 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
111 }
112 
113 static int apbt_shutdown(struct clock_event_device *evt)
114 {
115 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
116 	unsigned long ctrl;
117 
118 	pr_debug("%s CPU %d state=shutdown\n", __func__,
119 		 cpumask_first(evt->cpumask));
120 
121 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
122 	ctrl &= ~APBTMR_CONTROL_ENABLE;
123 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
124 	return 0;
125 }
126 
127 static int apbt_set_oneshot(struct clock_event_device *evt)
128 {
129 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
130 	unsigned long ctrl;
131 
132 	pr_debug("%s CPU %d state=oneshot\n", __func__,
133 		 cpumask_first(evt->cpumask));
134 
135 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
136 	/*
137 	 * set free running mode, this mode will let timer reload max
138 	 * timeout which will give time (3min on 25MHz clock) to rearm
139 	 * the next event, therefore emulate the one-shot mode.
140 	 */
141 	ctrl &= ~APBTMR_CONTROL_ENABLE;
142 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
143 
144 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
145 	/* write again to set free running mode */
146 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
147 
148 	/*
149 	 * DW APB p. 46, load counter with all 1s before starting free
150 	 * running mode.
151 	 */
152 	apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
153 	ctrl &= ~APBTMR_CONTROL_INT;
154 	ctrl |= APBTMR_CONTROL_ENABLE;
155 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
156 	return 0;
157 }
158 
159 static int apbt_set_periodic(struct clock_event_device *evt)
160 {
161 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
162 	unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
163 	unsigned long ctrl;
164 
165 	pr_debug("%s CPU %d state=periodic\n", __func__,
166 		 cpumask_first(evt->cpumask));
167 
168 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
169 	ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
170 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171 	/*
172 	 * DW APB p. 46, have to disable timer before load counter,
173 	 * may cause sync problem.
174 	 */
175 	ctrl &= ~APBTMR_CONTROL_ENABLE;
176 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
177 	udelay(1);
178 	pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
179 	apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
180 	ctrl |= APBTMR_CONTROL_ENABLE;
181 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
182 	return 0;
183 }
184 
185 static int apbt_resume(struct clock_event_device *evt)
186 {
187 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
188 
189 	pr_debug("%s CPU %d state=resume\n", __func__,
190 		 cpumask_first(evt->cpumask));
191 
192 	apbt_enable_int(&dw_ced->timer);
193 	return 0;
194 }
195 
196 static int apbt_next_event(unsigned long delta,
197 			   struct clock_event_device *evt)
198 {
199 	unsigned long ctrl;
200 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
201 
202 	/* Disable timer */
203 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
204 	ctrl &= ~APBTMR_CONTROL_ENABLE;
205 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
206 	/* write new count */
207 	apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
208 	ctrl |= APBTMR_CONTROL_ENABLE;
209 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
210 
211 	return 0;
212 }
213 
214 /**
215  * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
216  *
217  * @cpu:	The CPU the events will be targeted at.
218  * @name:	The name used for the timer and the IRQ for it.
219  * @rating:	The rating to give the timer.
220  * @base:	I/O base for the timer registers.
221  * @irq:	The interrupt number to use for the timer.
222  * @freq:	The frequency that the timer counts at.
223  *
224  * This creates a clock_event_device for using with the generic clock layer
225  * but does not start and register it.  This should be done with
226  * dw_apb_clockevent_register() as the next step.  If this is the first time
227  * it has been called for a timer then the IRQ will be requested, if not it
228  * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
229  * releasing the IRQ.
230  */
231 struct dw_apb_clock_event_device *
232 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
233 		       void __iomem *base, int irq, unsigned long freq)
234 {
235 	struct dw_apb_clock_event_device *dw_ced =
236 		kzalloc(sizeof(*dw_ced), GFP_KERNEL);
237 	int err;
238 
239 	if (!dw_ced)
240 		return NULL;
241 
242 	dw_ced->timer.base = base;
243 	dw_ced->timer.irq = irq;
244 	dw_ced->timer.freq = freq;
245 
246 	clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
247 	dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
248 						       &dw_ced->ced);
249 	dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
250 	dw_ced->ced.cpumask = cpumask_of(cpu);
251 	dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
252 				CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
253 	dw_ced->ced.set_state_shutdown = apbt_shutdown;
254 	dw_ced->ced.set_state_periodic = apbt_set_periodic;
255 	dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
256 	dw_ced->ced.tick_resume = apbt_resume;
257 	dw_ced->ced.set_next_event = apbt_next_event;
258 	dw_ced->ced.irq = dw_ced->timer.irq;
259 	dw_ced->ced.rating = rating;
260 	dw_ced->ced.name = name;
261 
262 	dw_ced->irqaction.name		= dw_ced->ced.name;
263 	dw_ced->irqaction.handler	= dw_apb_clockevent_irq;
264 	dw_ced->irqaction.dev_id	= &dw_ced->ced;
265 	dw_ced->irqaction.irq		= irq;
266 	dw_ced->irqaction.flags		= IRQF_TIMER | IRQF_IRQPOLL |
267 					  IRQF_NOBALANCING;
268 
269 	dw_ced->eoi = apbt_eoi;
270 	err = setup_irq(irq, &dw_ced->irqaction);
271 	if (err) {
272 		pr_err("failed to request timer irq\n");
273 		kfree(dw_ced);
274 		dw_ced = NULL;
275 	}
276 
277 	return dw_ced;
278 }
279 
280 /**
281  * dw_apb_clockevent_resume() - resume a clock that has been paused.
282  *
283  * @dw_ced:	The APB clock to resume.
284  */
285 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
286 {
287 	enable_irq(dw_ced->timer.irq);
288 }
289 
290 /**
291  * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
292  *
293  * @dw_ced:	The APB clock to stop generating the events.
294  */
295 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
296 {
297 	free_irq(dw_ced->timer.irq, &dw_ced->ced);
298 }
299 
300 /**
301  * dw_apb_clockevent_register() - register the clock with the generic layer
302  *
303  * @dw_ced:	The APB clock to register as a clock_event_device.
304  */
305 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
306 {
307 	apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
308 	clockevents_register_device(&dw_ced->ced);
309 	apbt_enable_int(&dw_ced->timer);
310 }
311 
312 /**
313  * dw_apb_clocksource_start() - start the clocksource counting.
314  *
315  * @dw_cs:	The clocksource to start.
316  *
317  * This is used to start the clocksource before registration and can be used
318  * to enable calibration of timers.
319  */
320 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
321 {
322 	/*
323 	 * start count down from 0xffff_ffff. this is done by toggling the
324 	 * enable bit then load initial load count to ~0.
325 	 */
326 	unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
327 
328 	ctrl &= ~APBTMR_CONTROL_ENABLE;
329 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
330 	apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
331 	/* enable, mask interrupt */
332 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
333 	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
334 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
335 	/* read it once to get cached counter value initialized */
336 	dw_apb_clocksource_read(dw_cs);
337 }
338 
339 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
340 {
341 	unsigned long current_count;
342 	struct dw_apb_clocksource *dw_cs =
343 		clocksource_to_dw_apb_clocksource(cs);
344 
345 	current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
346 
347 	return (cycle_t)~current_count;
348 }
349 
350 static void apbt_restart_clocksource(struct clocksource *cs)
351 {
352 	struct dw_apb_clocksource *dw_cs =
353 		clocksource_to_dw_apb_clocksource(cs);
354 
355 	dw_apb_clocksource_start(dw_cs);
356 }
357 
358 /**
359  * dw_apb_clocksource_init() - use an APB timer as a clocksource.
360  *
361  * @rating:	The rating to give the clocksource.
362  * @name:	The name for the clocksource.
363  * @base:	The I/O base for the timer registers.
364  * @freq:	The frequency that the timer counts at.
365  *
366  * This creates a clocksource using an APB timer but does not yet register it
367  * with the clocksource system.  This should be done with
368  * dw_apb_clocksource_register() as the next step.
369  */
370 struct dw_apb_clocksource *
371 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
372 			unsigned long freq)
373 {
374 	struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
375 
376 	if (!dw_cs)
377 		return NULL;
378 
379 	dw_cs->timer.base = base;
380 	dw_cs->timer.freq = freq;
381 	dw_cs->cs.name = name;
382 	dw_cs->cs.rating = rating;
383 	dw_cs->cs.read = __apbt_read_clocksource;
384 	dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
385 	dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
386 	dw_cs->cs.resume = apbt_restart_clocksource;
387 
388 	return dw_cs;
389 }
390 
391 /**
392  * dw_apb_clocksource_register() - register the APB clocksource.
393  *
394  * @dw_cs:	The clocksource to register.
395  */
396 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
397 {
398 	clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
399 }
400 
401 /**
402  * dw_apb_clocksource_read() - read the current value of a clocksource.
403  *
404  * @dw_cs:	The clocksource to read.
405  */
406 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
407 {
408 	return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
409 }
410