1 /*
2  * drivers/clocksource/arm_global_timer.c
3  *
4  * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
5  * Author: Stuart Menefy <stuart.menefy@st.com>
6  * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/clocksource.h>
16 #include <linux/clockchips.h>
17 #include <linux/cpu.h>
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/of.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/sched_clock.h>
26 
27 #include <asm/cputype.h>
28 
29 #define GT_COUNTER0	0x00
30 #define GT_COUNTER1	0x04
31 
32 #define GT_CONTROL	0x08
33 #define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
34 #define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
35 #define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
36 #define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
37 
38 #define GT_INT_STATUS	0x0c
39 #define GT_INT_STATUS_EVENT_FLAG	BIT(0)
40 
41 #define GT_COMP0	0x10
42 #define GT_COMP1	0x14
43 #define GT_AUTO_INC	0x18
44 
45 /*
46  * We are expecting to be clocked by the ARM peripheral clock.
47  *
48  * Note: it is assumed we are using a prescaler value of zero, so this is
49  * the units for all operations.
50  */
51 static void __iomem *gt_base;
52 static unsigned long gt_clk_rate;
53 static int gt_ppi;
54 static struct clock_event_device __percpu *gt_evt;
55 
56 /*
57  * To get the value from the Global Timer Counter register proceed as follows:
58  * 1. Read the upper 32-bit timer counter register
59  * 2. Read the lower 32-bit timer counter register
60  * 3. Read the upper 32-bit timer counter register again. If the value is
61  *  different to the 32-bit upper value read previously, go back to step 2.
62  *  Otherwise the 64-bit timer counter value is correct.
63  */
64 static u64 notrace _gt_counter_read(void)
65 {
66 	u64 counter;
67 	u32 lower;
68 	u32 upper, old_upper;
69 
70 	upper = readl_relaxed(gt_base + GT_COUNTER1);
71 	do {
72 		old_upper = upper;
73 		lower = readl_relaxed(gt_base + GT_COUNTER0);
74 		upper = readl_relaxed(gt_base + GT_COUNTER1);
75 	} while (upper != old_upper);
76 
77 	counter = upper;
78 	counter <<= 32;
79 	counter |= lower;
80 	return counter;
81 }
82 
83 static u64 gt_counter_read(void)
84 {
85 	return _gt_counter_read();
86 }
87 
88 /**
89  * To ensure that updates to comparator value register do not set the
90  * Interrupt Status Register proceed as follows:
91  * 1. Clear the Comp Enable bit in the Timer Control Register.
92  * 2. Write the lower 32-bit Comparator Value Register.
93  * 3. Write the upper 32-bit Comparator Value Register.
94  * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
95  */
96 static void gt_compare_set(unsigned long delta, int periodic)
97 {
98 	u64 counter = gt_counter_read();
99 	unsigned long ctrl;
100 
101 	counter += delta;
102 	ctrl = GT_CONTROL_TIMER_ENABLE;
103 	writel_relaxed(ctrl, gt_base + GT_CONTROL);
104 	writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
105 	writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
106 
107 	if (periodic) {
108 		writel_relaxed(delta, gt_base + GT_AUTO_INC);
109 		ctrl |= GT_CONTROL_AUTO_INC;
110 	}
111 
112 	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
113 	writel_relaxed(ctrl, gt_base + GT_CONTROL);
114 }
115 
116 static int gt_clockevent_shutdown(struct clock_event_device *evt)
117 {
118 	unsigned long ctrl;
119 
120 	ctrl = readl(gt_base + GT_CONTROL);
121 	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
122 		  GT_CONTROL_AUTO_INC);
123 	writel(ctrl, gt_base + GT_CONTROL);
124 	return 0;
125 }
126 
127 static int gt_clockevent_set_periodic(struct clock_event_device *evt)
128 {
129 	gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
130 	return 0;
131 }
132 
133 static int gt_clockevent_set_next_event(unsigned long evt,
134 					struct clock_event_device *unused)
135 {
136 	gt_compare_set(evt, 0);
137 	return 0;
138 }
139 
140 static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
141 {
142 	struct clock_event_device *evt = dev_id;
143 
144 	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
145 				GT_INT_STATUS_EVENT_FLAG))
146 		return IRQ_NONE;
147 
148 	/**
149 	 * ERRATA 740657( Global Timer can send 2 interrupts for
150 	 * the same event in single-shot mode)
151 	 * Workaround:
152 	 *	Either disable single-shot mode.
153 	 *	Or
154 	 *	Modify the Interrupt Handler to avoid the
155 	 *	offending sequence. This is achieved by clearing
156 	 *	the Global Timer flag _after_ having incremented
157 	 *	the Comparator register	value to a higher value.
158 	 */
159 	if (clockevent_state_oneshot(evt))
160 		gt_compare_set(ULONG_MAX, 0);
161 
162 	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
163 	evt->event_handler(evt);
164 
165 	return IRQ_HANDLED;
166 }
167 
168 static int gt_starting_cpu(unsigned int cpu)
169 {
170 	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
171 
172 	clk->name = "arm_global_timer";
173 	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
174 		CLOCK_EVT_FEAT_PERCPU;
175 	clk->set_state_shutdown = gt_clockevent_shutdown;
176 	clk->set_state_periodic = gt_clockevent_set_periodic;
177 	clk->set_state_oneshot = gt_clockevent_shutdown;
178 	clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
179 	clk->set_next_event = gt_clockevent_set_next_event;
180 	clk->cpumask = cpumask_of(cpu);
181 	clk->rating = 300;
182 	clk->irq = gt_ppi;
183 	clockevents_config_and_register(clk, gt_clk_rate,
184 					1, 0xffffffff);
185 	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
186 	return 0;
187 }
188 
189 static int gt_dying_cpu(unsigned int cpu)
190 {
191 	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
192 
193 	gt_clockevent_shutdown(clk);
194 	disable_percpu_irq(clk->irq);
195 	return 0;
196 }
197 
198 static cycle_t gt_clocksource_read(struct clocksource *cs)
199 {
200 	return gt_counter_read();
201 }
202 
203 static void gt_resume(struct clocksource *cs)
204 {
205 	unsigned long ctrl;
206 
207 	ctrl = readl(gt_base + GT_CONTROL);
208 	if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
209 		/* re-enable timer on resume */
210 		writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
211 }
212 
213 static struct clocksource gt_clocksource = {
214 	.name	= "arm_global_timer",
215 	.rating	= 300,
216 	.read	= gt_clocksource_read,
217 	.mask	= CLOCKSOURCE_MASK(64),
218 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
219 	.resume = gt_resume,
220 };
221 
222 #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
223 static u64 notrace gt_sched_clock_read(void)
224 {
225 	return _gt_counter_read();
226 }
227 #endif
228 
229 static unsigned long gt_read_long(void)
230 {
231 	return readl_relaxed(gt_base + GT_COUNTER0);
232 }
233 
234 static struct delay_timer gt_delay_timer = {
235 	.read_current_timer = gt_read_long,
236 };
237 
238 static void __init gt_delay_timer_init(void)
239 {
240 	gt_delay_timer.freq = gt_clk_rate;
241 	register_current_timer_delay(&gt_delay_timer);
242 }
243 
244 static int __init gt_clocksource_init(void)
245 {
246 	writel(0, gt_base + GT_CONTROL);
247 	writel(0, gt_base + GT_COUNTER0);
248 	writel(0, gt_base + GT_COUNTER1);
249 	/* enables timer on all the cores */
250 	writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
251 
252 #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
253 	sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
254 #endif
255 	return clocksource_register_hz(&gt_clocksource, gt_clk_rate);
256 }
257 
258 static int __init global_timer_of_register(struct device_node *np)
259 {
260 	struct clk *gt_clk;
261 	int err = 0;
262 
263 	/*
264 	 * In A9 r2p0 the comparators for each processor with the global timer
265 	 * fire when the timer value is greater than or equal to. In previous
266 	 * revisions the comparators fired when the timer value was equal to.
267 	 */
268 	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
269 	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
270 		pr_warn("global-timer: non support for this cpu version.\n");
271 		return -ENOSYS;
272 	}
273 
274 	gt_ppi = irq_of_parse_and_map(np, 0);
275 	if (!gt_ppi) {
276 		pr_warn("global-timer: unable to parse irq\n");
277 		return -EINVAL;
278 	}
279 
280 	gt_base = of_iomap(np, 0);
281 	if (!gt_base) {
282 		pr_warn("global-timer: invalid base address\n");
283 		return -ENXIO;
284 	}
285 
286 	gt_clk = of_clk_get(np, 0);
287 	if (!IS_ERR(gt_clk)) {
288 		err = clk_prepare_enable(gt_clk);
289 		if (err)
290 			goto out_unmap;
291 	} else {
292 		pr_warn("global-timer: clk not found\n");
293 		err = -EINVAL;
294 		goto out_unmap;
295 	}
296 
297 	gt_clk_rate = clk_get_rate(gt_clk);
298 	gt_evt = alloc_percpu(struct clock_event_device);
299 	if (!gt_evt) {
300 		pr_warn("global-timer: can't allocate memory\n");
301 		err = -ENOMEM;
302 		goto out_clk;
303 	}
304 
305 	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
306 				 "gt", gt_evt);
307 	if (err) {
308 		pr_warn("global-timer: can't register interrupt %d (%d)\n",
309 			gt_ppi, err);
310 		goto out_free;
311 	}
312 
313 	/* Register and immediately configure the timer on the boot CPU */
314 	err = gt_clocksource_init();
315 	if (err)
316 		goto out_irq;
317 
318 	err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
319 				"AP_ARM_GLOBAL_TIMER_STARTING",
320 				gt_starting_cpu, gt_dying_cpu);
321 	if (err)
322 		goto out_irq;
323 
324 	gt_delay_timer_init();
325 
326 	return 0;
327 
328 out_irq:
329 	free_percpu_irq(gt_ppi, gt_evt);
330 out_free:
331 	free_percpu(gt_evt);
332 out_clk:
333 	clk_disable_unprepare(gt_clk);
334 out_unmap:
335 	iounmap(gt_base);
336 	WARN(err, "ARM Global timer register failed (%d)\n", err);
337 
338 	return err;
339 }
340 
341 /* Only tested on r2p2 and r3p0  */
342 CLOCKSOURCE_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
343 			global_timer_of_register);
344