1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 
30 #include <asm/arch_timer.h>
31 #include <asm/virt.h>
32 
33 #include <clocksource/arm_arch_timer.h>
34 
35 #define CNTTIDR		0x08
36 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
37 
38 #define CNTACR(n)	(0x40 + ((n) * 4))
39 #define CNTACR_RPCT	BIT(0)
40 #define CNTACR_RVCT	BIT(1)
41 #define CNTACR_RFRQ	BIT(2)
42 #define CNTACR_RVOFF	BIT(3)
43 #define CNTACR_RWVT	BIT(4)
44 #define CNTACR_RWPT	BIT(5)
45 
46 #define CNTVCT_LO	0x08
47 #define CNTVCT_HI	0x0c
48 #define CNTFRQ		0x10
49 #define CNTP_TVAL	0x28
50 #define CNTP_CTL	0x2c
51 #define CNTV_TVAL	0x38
52 #define CNTV_CTL	0x3c
53 
54 #define ARCH_CP15_TIMER	BIT(0)
55 #define ARCH_MEM_TIMER	BIT(1)
56 static unsigned arch_timers_present __initdata;
57 
58 static void __iomem *arch_counter_base;
59 
60 struct arch_timer {
61 	void __iomem *base;
62 	struct clock_event_device evt;
63 };
64 
65 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66 
67 static u32 arch_timer_rate;
68 
69 enum ppi_nr {
70 	PHYS_SECURE_PPI,
71 	PHYS_NONSECURE_PPI,
72 	VIRT_PPI,
73 	HYP_PPI,
74 	MAX_TIMER_PPI
75 };
76 
77 static int arch_timer_ppi[MAX_TIMER_PPI];
78 
79 static struct clock_event_device __percpu *arch_timer_evt;
80 
81 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82 static bool arch_timer_c3stop;
83 static bool arch_timer_mem_use_virtual;
84 static bool arch_counter_suspend_stop;
85 
86 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
87 
88 static int __init early_evtstrm_cfg(char *buf)
89 {
90 	return strtobool(buf, &evtstrm_enable);
91 }
92 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
93 
94 /*
95  * Architected system timer support.
96  */
97 
98 #ifdef CONFIG_FSL_ERRATUM_A008585
99 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
100 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
101 
102 static int fsl_a008585_enable = -1;
103 
104 static int __init early_fsl_a008585_cfg(char *buf)
105 {
106 	int ret;
107 	bool val;
108 
109 	ret = strtobool(buf, &val);
110 	if (ret)
111 		return ret;
112 
113 	fsl_a008585_enable = val;
114 	return 0;
115 }
116 early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);
117 
118 u32 __fsl_a008585_read_cntp_tval_el0(void)
119 {
120 	return __fsl_a008585_read_reg(cntp_tval_el0);
121 }
122 
123 u32 __fsl_a008585_read_cntv_tval_el0(void)
124 {
125 	return __fsl_a008585_read_reg(cntv_tval_el0);
126 }
127 
128 u64 __fsl_a008585_read_cntvct_el0(void)
129 {
130 	return __fsl_a008585_read_reg(cntvct_el0);
131 }
132 EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
133 #endif /* CONFIG_FSL_ERRATUM_A008585 */
134 
135 static __always_inline
136 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
137 			  struct clock_event_device *clk)
138 {
139 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
140 		struct arch_timer *timer = to_arch_timer(clk);
141 		switch (reg) {
142 		case ARCH_TIMER_REG_CTRL:
143 			writel_relaxed(val, timer->base + CNTP_CTL);
144 			break;
145 		case ARCH_TIMER_REG_TVAL:
146 			writel_relaxed(val, timer->base + CNTP_TVAL);
147 			break;
148 		}
149 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
150 		struct arch_timer *timer = to_arch_timer(clk);
151 		switch (reg) {
152 		case ARCH_TIMER_REG_CTRL:
153 			writel_relaxed(val, timer->base + CNTV_CTL);
154 			break;
155 		case ARCH_TIMER_REG_TVAL:
156 			writel_relaxed(val, timer->base + CNTV_TVAL);
157 			break;
158 		}
159 	} else {
160 		arch_timer_reg_write_cp15(access, reg, val);
161 	}
162 }
163 
164 static __always_inline
165 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
166 			struct clock_event_device *clk)
167 {
168 	u32 val;
169 
170 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
171 		struct arch_timer *timer = to_arch_timer(clk);
172 		switch (reg) {
173 		case ARCH_TIMER_REG_CTRL:
174 			val = readl_relaxed(timer->base + CNTP_CTL);
175 			break;
176 		case ARCH_TIMER_REG_TVAL:
177 			val = readl_relaxed(timer->base + CNTP_TVAL);
178 			break;
179 		}
180 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
181 		struct arch_timer *timer = to_arch_timer(clk);
182 		switch (reg) {
183 		case ARCH_TIMER_REG_CTRL:
184 			val = readl_relaxed(timer->base + CNTV_CTL);
185 			break;
186 		case ARCH_TIMER_REG_TVAL:
187 			val = readl_relaxed(timer->base + CNTV_TVAL);
188 			break;
189 		}
190 	} else {
191 		val = arch_timer_reg_read_cp15(access, reg);
192 	}
193 
194 	return val;
195 }
196 
197 static __always_inline irqreturn_t timer_handler(const int access,
198 					struct clock_event_device *evt)
199 {
200 	unsigned long ctrl;
201 
202 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
203 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
204 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
205 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
206 		evt->event_handler(evt);
207 		return IRQ_HANDLED;
208 	}
209 
210 	return IRQ_NONE;
211 }
212 
213 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
214 {
215 	struct clock_event_device *evt = dev_id;
216 
217 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
218 }
219 
220 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
221 {
222 	struct clock_event_device *evt = dev_id;
223 
224 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
225 }
226 
227 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
228 {
229 	struct clock_event_device *evt = dev_id;
230 
231 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
232 }
233 
234 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
235 {
236 	struct clock_event_device *evt = dev_id;
237 
238 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
239 }
240 
241 static __always_inline int timer_shutdown(const int access,
242 					  struct clock_event_device *clk)
243 {
244 	unsigned long ctrl;
245 
246 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
247 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
248 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
249 
250 	return 0;
251 }
252 
253 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
254 {
255 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
256 }
257 
258 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
259 {
260 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
261 }
262 
263 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
264 {
265 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
266 }
267 
268 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
269 {
270 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
271 }
272 
273 static __always_inline void set_next_event(const int access, unsigned long evt,
274 					   struct clock_event_device *clk)
275 {
276 	unsigned long ctrl;
277 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
278 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
279 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
280 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
281 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
282 }
283 
284 #ifdef CONFIG_FSL_ERRATUM_A008585
285 static __always_inline void fsl_a008585_set_next_event(const int access,
286 		unsigned long evt, struct clock_event_device *clk)
287 {
288 	unsigned long ctrl;
289 	u64 cval = evt + arch_counter_get_cntvct();
290 
291 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
292 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
293 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
294 
295 	if (access == ARCH_TIMER_PHYS_ACCESS)
296 		write_sysreg(cval, cntp_cval_el0);
297 	else if (access == ARCH_TIMER_VIRT_ACCESS)
298 		write_sysreg(cval, cntv_cval_el0);
299 
300 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
301 }
302 
303 static int fsl_a008585_set_next_event_virt(unsigned long evt,
304 					   struct clock_event_device *clk)
305 {
306 	fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
307 	return 0;
308 }
309 
310 static int fsl_a008585_set_next_event_phys(unsigned long evt,
311 					   struct clock_event_device *clk)
312 {
313 	fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
314 	return 0;
315 }
316 #endif /* CONFIG_FSL_ERRATUM_A008585 */
317 
318 static int arch_timer_set_next_event_virt(unsigned long evt,
319 					  struct clock_event_device *clk)
320 {
321 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
322 	return 0;
323 }
324 
325 static int arch_timer_set_next_event_phys(unsigned long evt,
326 					  struct clock_event_device *clk)
327 {
328 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
329 	return 0;
330 }
331 
332 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
333 					      struct clock_event_device *clk)
334 {
335 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
336 	return 0;
337 }
338 
339 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
340 					      struct clock_event_device *clk)
341 {
342 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
343 	return 0;
344 }
345 
346 static void fsl_a008585_set_sne(struct clock_event_device *clk)
347 {
348 #ifdef CONFIG_FSL_ERRATUM_A008585
349 	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
350 		return;
351 
352 	if (arch_timer_uses_ppi == VIRT_PPI)
353 		clk->set_next_event = fsl_a008585_set_next_event_virt;
354 	else
355 		clk->set_next_event = fsl_a008585_set_next_event_phys;
356 #endif
357 }
358 
359 static void __arch_timer_setup(unsigned type,
360 			       struct clock_event_device *clk)
361 {
362 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
363 
364 	if (type == ARCH_CP15_TIMER) {
365 		if (arch_timer_c3stop)
366 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
367 		clk->name = "arch_sys_timer";
368 		clk->rating = 450;
369 		clk->cpumask = cpumask_of(smp_processor_id());
370 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
371 		switch (arch_timer_uses_ppi) {
372 		case VIRT_PPI:
373 			clk->set_state_shutdown = arch_timer_shutdown_virt;
374 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
375 			clk->set_next_event = arch_timer_set_next_event_virt;
376 			break;
377 		case PHYS_SECURE_PPI:
378 		case PHYS_NONSECURE_PPI:
379 		case HYP_PPI:
380 			clk->set_state_shutdown = arch_timer_shutdown_phys;
381 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
382 			clk->set_next_event = arch_timer_set_next_event_phys;
383 			break;
384 		default:
385 			BUG();
386 		}
387 
388 		fsl_a008585_set_sne(clk);
389 	} else {
390 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
391 		clk->name = "arch_mem_timer";
392 		clk->rating = 400;
393 		clk->cpumask = cpu_all_mask;
394 		if (arch_timer_mem_use_virtual) {
395 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
396 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
397 			clk->set_next_event =
398 				arch_timer_set_next_event_virt_mem;
399 		} else {
400 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
401 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
402 			clk->set_next_event =
403 				arch_timer_set_next_event_phys_mem;
404 		}
405 	}
406 
407 	clk->set_state_shutdown(clk);
408 
409 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
410 }
411 
412 static void arch_timer_evtstrm_enable(int divider)
413 {
414 	u32 cntkctl = arch_timer_get_cntkctl();
415 
416 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
417 	/* Set the divider and enable virtual event stream */
418 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
419 			| ARCH_TIMER_VIRT_EVT_EN;
420 	arch_timer_set_cntkctl(cntkctl);
421 	elf_hwcap |= HWCAP_EVTSTRM;
422 #ifdef CONFIG_COMPAT
423 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
424 #endif
425 }
426 
427 static void arch_timer_configure_evtstream(void)
428 {
429 	int evt_stream_div, pos;
430 
431 	/* Find the closest power of two to the divisor */
432 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
433 	pos = fls(evt_stream_div);
434 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
435 		pos--;
436 	/* enable event stream */
437 	arch_timer_evtstrm_enable(min(pos, 15));
438 }
439 
440 static void arch_counter_set_user_access(void)
441 {
442 	u32 cntkctl = arch_timer_get_cntkctl();
443 
444 	/* Disable user access to the timers and the physical counter */
445 	/* Also disable virtual event stream */
446 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
447 			| ARCH_TIMER_USR_VT_ACCESS_EN
448 			| ARCH_TIMER_VIRT_EVT_EN
449 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
450 
451 	/* Enable user access to the virtual counter */
452 	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
453 
454 	arch_timer_set_cntkctl(cntkctl);
455 }
456 
457 static bool arch_timer_has_nonsecure_ppi(void)
458 {
459 	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
460 		arch_timer_ppi[PHYS_NONSECURE_PPI]);
461 }
462 
463 static u32 check_ppi_trigger(int irq)
464 {
465 	u32 flags = irq_get_trigger_type(irq);
466 
467 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
468 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
469 		pr_warn("WARNING: Please fix your firmware\n");
470 		flags = IRQF_TRIGGER_LOW;
471 	}
472 
473 	return flags;
474 }
475 
476 static int arch_timer_starting_cpu(unsigned int cpu)
477 {
478 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
479 	u32 flags;
480 
481 	__arch_timer_setup(ARCH_CP15_TIMER, clk);
482 
483 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
484 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
485 
486 	if (arch_timer_has_nonsecure_ppi()) {
487 		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
488 		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
489 	}
490 
491 	arch_counter_set_user_access();
492 	if (evtstrm_enable)
493 		arch_timer_configure_evtstream();
494 
495 	return 0;
496 }
497 
498 static void
499 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
500 {
501 	/* Who has more than one independent system counter? */
502 	if (arch_timer_rate)
503 		return;
504 
505 	/*
506 	 * Try to determine the frequency from the device tree or CNTFRQ,
507 	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
508 	 */
509 	if (!acpi_disabled ||
510 	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
511 		if (cntbase)
512 			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
513 		else
514 			arch_timer_rate = arch_timer_get_cntfrq();
515 	}
516 
517 	/* Check the timer frequency. */
518 	if (arch_timer_rate == 0)
519 		pr_warn("Architected timer frequency not available\n");
520 }
521 
522 static void arch_timer_banner(unsigned type)
523 {
524 	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
525 		     type & ARCH_CP15_TIMER ? "cp15" : "",
526 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
527 		     type & ARCH_MEM_TIMER ? "mmio" : "",
528 		     (unsigned long)arch_timer_rate / 1000000,
529 		     (unsigned long)(arch_timer_rate / 10000) % 100,
530 		     type & ARCH_CP15_TIMER ?
531 		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
532 			"",
533 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
534 		     type & ARCH_MEM_TIMER ?
535 			arch_timer_mem_use_virtual ? "virt" : "phys" :
536 			"");
537 }
538 
539 u32 arch_timer_get_rate(void)
540 {
541 	return arch_timer_rate;
542 }
543 
544 static u64 arch_counter_get_cntvct_mem(void)
545 {
546 	u32 vct_lo, vct_hi, tmp_hi;
547 
548 	do {
549 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
550 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
551 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
552 	} while (vct_hi != tmp_hi);
553 
554 	return ((u64) vct_hi << 32) | vct_lo;
555 }
556 
557 /*
558  * Default to cp15 based access because arm64 uses this function for
559  * sched_clock() before DT is probed and the cp15 method is guaranteed
560  * to exist on arm64. arm doesn't use this before DT is probed so even
561  * if we don't have the cp15 accessors we won't have a problem.
562  */
563 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
564 
565 static u64 arch_counter_read(struct clocksource *cs)
566 {
567 	return arch_timer_read_counter();
568 }
569 
570 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
571 {
572 	return arch_timer_read_counter();
573 }
574 
575 static struct clocksource clocksource_counter = {
576 	.name	= "arch_sys_counter",
577 	.rating	= 400,
578 	.read	= arch_counter_read,
579 	.mask	= CLOCKSOURCE_MASK(56),
580 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
581 };
582 
583 static struct cyclecounter cyclecounter = {
584 	.read	= arch_counter_read_cc,
585 	.mask	= CLOCKSOURCE_MASK(56),
586 };
587 
588 static struct arch_timer_kvm_info arch_timer_kvm_info;
589 
590 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
591 {
592 	return &arch_timer_kvm_info;
593 }
594 
595 static void __init arch_counter_register(unsigned type)
596 {
597 	u64 start_count;
598 
599 	/* Register the CP15 based counter if we have one */
600 	if (type & ARCH_CP15_TIMER) {
601 		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
602 			arch_timer_read_counter = arch_counter_get_cntvct;
603 		else
604 			arch_timer_read_counter = arch_counter_get_cntpct;
605 
606 		clocksource_counter.archdata.vdso_direct = true;
607 
608 #ifdef CONFIG_FSL_ERRATUM_A008585
609 		/*
610 		 * Don't use the vdso fastpath if errata require using
611 		 * the out-of-line counter accessor.
612 		 */
613 		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
614 			clocksource_counter.archdata.vdso_direct = false;
615 #endif
616 	} else {
617 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
618 	}
619 
620 	if (!arch_counter_suspend_stop)
621 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
622 	start_count = arch_timer_read_counter();
623 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
624 	cyclecounter.mult = clocksource_counter.mult;
625 	cyclecounter.shift = clocksource_counter.shift;
626 	timecounter_init(&arch_timer_kvm_info.timecounter,
627 			 &cyclecounter, start_count);
628 
629 	/* 56 bits minimum, so we assume worst case rollover */
630 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
631 }
632 
633 static void arch_timer_stop(struct clock_event_device *clk)
634 {
635 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
636 		 clk->irq, smp_processor_id());
637 
638 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
639 	if (arch_timer_has_nonsecure_ppi())
640 		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
641 
642 	clk->set_state_shutdown(clk);
643 }
644 
645 static int arch_timer_dying_cpu(unsigned int cpu)
646 {
647 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
648 
649 	arch_timer_stop(clk);
650 	return 0;
651 }
652 
653 #ifdef CONFIG_CPU_PM
654 static unsigned int saved_cntkctl;
655 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
656 				    unsigned long action, void *hcpu)
657 {
658 	if (action == CPU_PM_ENTER)
659 		saved_cntkctl = arch_timer_get_cntkctl();
660 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
661 		arch_timer_set_cntkctl(saved_cntkctl);
662 	return NOTIFY_OK;
663 }
664 
665 static struct notifier_block arch_timer_cpu_pm_notifier = {
666 	.notifier_call = arch_timer_cpu_pm_notify,
667 };
668 
669 static int __init arch_timer_cpu_pm_init(void)
670 {
671 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
672 }
673 
674 static void __init arch_timer_cpu_pm_deinit(void)
675 {
676 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
677 }
678 
679 #else
680 static int __init arch_timer_cpu_pm_init(void)
681 {
682 	return 0;
683 }
684 
685 static void __init arch_timer_cpu_pm_deinit(void)
686 {
687 }
688 #endif
689 
690 static int __init arch_timer_register(void)
691 {
692 	int err;
693 	int ppi;
694 
695 	arch_timer_evt = alloc_percpu(struct clock_event_device);
696 	if (!arch_timer_evt) {
697 		err = -ENOMEM;
698 		goto out;
699 	}
700 
701 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
702 	switch (arch_timer_uses_ppi) {
703 	case VIRT_PPI:
704 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
705 					 "arch_timer", arch_timer_evt);
706 		break;
707 	case PHYS_SECURE_PPI:
708 	case PHYS_NONSECURE_PPI:
709 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
710 					 "arch_timer", arch_timer_evt);
711 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
712 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
713 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
714 						 "arch_timer", arch_timer_evt);
715 			if (err)
716 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
717 						arch_timer_evt);
718 		}
719 		break;
720 	case HYP_PPI:
721 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
722 					 "arch_timer", arch_timer_evt);
723 		break;
724 	default:
725 		BUG();
726 	}
727 
728 	if (err) {
729 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
730 		       ppi, err);
731 		goto out_free;
732 	}
733 
734 	err = arch_timer_cpu_pm_init();
735 	if (err)
736 		goto out_unreg_notify;
737 
738 
739 	/* Register and immediately configure the timer on the boot CPU */
740 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
741 				"clockevents/arm/arch_timer:starting",
742 				arch_timer_starting_cpu, arch_timer_dying_cpu);
743 	if (err)
744 		goto out_unreg_cpupm;
745 	return 0;
746 
747 out_unreg_cpupm:
748 	arch_timer_cpu_pm_deinit();
749 
750 out_unreg_notify:
751 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
752 	if (arch_timer_has_nonsecure_ppi())
753 		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
754 				arch_timer_evt);
755 
756 out_free:
757 	free_percpu(arch_timer_evt);
758 out:
759 	return err;
760 }
761 
762 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
763 {
764 	int ret;
765 	irq_handler_t func;
766 	struct arch_timer *t;
767 
768 	t = kzalloc(sizeof(*t), GFP_KERNEL);
769 	if (!t)
770 		return -ENOMEM;
771 
772 	t->base = base;
773 	t->evt.irq = irq;
774 	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
775 
776 	if (arch_timer_mem_use_virtual)
777 		func = arch_timer_handler_virt_mem;
778 	else
779 		func = arch_timer_handler_phys_mem;
780 
781 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
782 	if (ret) {
783 		pr_err("arch_timer: Failed to request mem timer irq\n");
784 		kfree(t);
785 	}
786 
787 	return ret;
788 }
789 
790 static const struct of_device_id arch_timer_of_match[] __initconst = {
791 	{ .compatible   = "arm,armv7-timer",    },
792 	{ .compatible   = "arm,armv8-timer",    },
793 	{},
794 };
795 
796 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
797 	{ .compatible   = "arm,armv7-timer-mem", },
798 	{},
799 };
800 
801 static bool __init
802 arch_timer_needs_probing(int type, const struct of_device_id *matches)
803 {
804 	struct device_node *dn;
805 	bool needs_probing = false;
806 
807 	dn = of_find_matching_node(NULL, matches);
808 	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
809 		needs_probing = true;
810 	of_node_put(dn);
811 
812 	return needs_probing;
813 }
814 
815 static int __init arch_timer_common_init(void)
816 {
817 	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
818 
819 	/* Wait until both nodes are probed if we have two timers */
820 	if ((arch_timers_present & mask) != mask) {
821 		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
822 			return 0;
823 		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
824 			return 0;
825 	}
826 
827 	arch_timer_banner(arch_timers_present);
828 	arch_counter_register(arch_timers_present);
829 	return arch_timer_arch_init();
830 }
831 
832 static int __init arch_timer_init(void)
833 {
834 	int ret;
835 	/*
836 	 * If HYP mode is available, we know that the physical timer
837 	 * has been configured to be accessible from PL1. Use it, so
838 	 * that a guest can use the virtual timer instead.
839 	 *
840 	 * If no interrupt provided for virtual timer, we'll have to
841 	 * stick to the physical timer. It'd better be accessible...
842 	 *
843 	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
844 	 * accesses to CNTP_*_EL1 registers are silently redirected to
845 	 * their CNTHP_*_EL2 counterparts, and use a different PPI
846 	 * number.
847 	 */
848 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
849 		bool has_ppi;
850 
851 		if (is_kernel_in_hyp_mode()) {
852 			arch_timer_uses_ppi = HYP_PPI;
853 			has_ppi = !!arch_timer_ppi[HYP_PPI];
854 		} else {
855 			arch_timer_uses_ppi = PHYS_SECURE_PPI;
856 			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
857 				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
858 		}
859 
860 		if (!has_ppi) {
861 			pr_warn("arch_timer: No interrupt available, giving up\n");
862 			return -EINVAL;
863 		}
864 	}
865 
866 	ret = arch_timer_register();
867 	if (ret)
868 		return ret;
869 
870 	ret = arch_timer_common_init();
871 	if (ret)
872 		return ret;
873 
874 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
875 
876 	return 0;
877 }
878 
879 static int __init arch_timer_of_init(struct device_node *np)
880 {
881 	int i;
882 
883 	if (arch_timers_present & ARCH_CP15_TIMER) {
884 		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
885 		return 0;
886 	}
887 
888 	arch_timers_present |= ARCH_CP15_TIMER;
889 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
890 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
891 
892 	arch_timer_detect_rate(NULL, np);
893 
894 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
895 
896 #ifdef CONFIG_FSL_ERRATUM_A008585
897 	if (fsl_a008585_enable < 0)
898 		fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
899 	if (fsl_a008585_enable) {
900 		static_branch_enable(&arch_timer_read_ool_enabled);
901 		pr_info("Enabling workaround for FSL erratum A-008585\n");
902 	}
903 #endif
904 
905 	/*
906 	 * If we cannot rely on firmware initializing the timer registers then
907 	 * we should use the physical timers instead.
908 	 */
909 	if (IS_ENABLED(CONFIG_ARM) &&
910 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
911 		arch_timer_uses_ppi = PHYS_SECURE_PPI;
912 
913 	/* On some systems, the counter stops ticking when in suspend. */
914 	arch_counter_suspend_stop = of_property_read_bool(np,
915 							 "arm,no-tick-in-suspend");
916 
917 	return arch_timer_init();
918 }
919 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
920 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
921 
922 static int __init arch_timer_mem_init(struct device_node *np)
923 {
924 	struct device_node *frame, *best_frame = NULL;
925 	void __iomem *cntctlbase, *base;
926 	unsigned int irq, ret = -EINVAL;
927 	u32 cnttidr;
928 
929 	arch_timers_present |= ARCH_MEM_TIMER;
930 	cntctlbase = of_iomap(np, 0);
931 	if (!cntctlbase) {
932 		pr_err("arch_timer: Can't find CNTCTLBase\n");
933 		return -ENXIO;
934 	}
935 
936 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
937 
938 	/*
939 	 * Try to find a virtual capable frame. Otherwise fall back to a
940 	 * physical capable frame.
941 	 */
942 	for_each_available_child_of_node(np, frame) {
943 		int n;
944 		u32 cntacr;
945 
946 		if (of_property_read_u32(frame, "frame-number", &n)) {
947 			pr_err("arch_timer: Missing frame-number\n");
948 			of_node_put(frame);
949 			goto out;
950 		}
951 
952 		/* Try enabling everything, and see what sticks */
953 		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
954 			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
955 		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
956 		cntacr = readl_relaxed(cntctlbase + CNTACR(n));
957 
958 		if ((cnttidr & CNTTIDR_VIRT(n)) &&
959 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
960 			of_node_put(best_frame);
961 			best_frame = frame;
962 			arch_timer_mem_use_virtual = true;
963 			break;
964 		}
965 
966 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
967 			continue;
968 
969 		of_node_put(best_frame);
970 		best_frame = of_node_get(frame);
971 	}
972 
973 	ret= -ENXIO;
974 	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
975 							 "arch_mem_timer");
976 	if (IS_ERR(base)) {
977 		pr_err("arch_timer: Can't map frame's registers\n");
978 		goto out;
979 	}
980 
981 	if (arch_timer_mem_use_virtual)
982 		irq = irq_of_parse_and_map(best_frame, 1);
983 	else
984 		irq = irq_of_parse_and_map(best_frame, 0);
985 
986 	ret = -EINVAL;
987 	if (!irq) {
988 		pr_err("arch_timer: Frame missing %s irq",
989 		       arch_timer_mem_use_virtual ? "virt" : "phys");
990 		goto out;
991 	}
992 
993 	arch_timer_detect_rate(base, np);
994 	ret = arch_timer_mem_register(base, irq);
995 	if (ret)
996 		goto out;
997 
998 	return arch_timer_common_init();
999 out:
1000 	iounmap(cntctlbase);
1001 	of_node_put(best_frame);
1002 	return ret;
1003 }
1004 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1005 		       arch_timer_mem_init);
1006 
1007 #ifdef CONFIG_ACPI
1008 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1009 {
1010 	int trigger, polarity;
1011 
1012 	if (!interrupt)
1013 		return 0;
1014 
1015 	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1016 			: ACPI_LEVEL_SENSITIVE;
1017 
1018 	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1019 			: ACPI_ACTIVE_HIGH;
1020 
1021 	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1022 }
1023 
1024 /* Initialize per-processor generic timer */
1025 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1026 {
1027 	struct acpi_table_gtdt *gtdt;
1028 
1029 	if (arch_timers_present & ARCH_CP15_TIMER) {
1030 		pr_warn("arch_timer: already initialized, skipping\n");
1031 		return -EINVAL;
1032 	}
1033 
1034 	gtdt = container_of(table, struct acpi_table_gtdt, header);
1035 
1036 	arch_timers_present |= ARCH_CP15_TIMER;
1037 
1038 	arch_timer_ppi[PHYS_SECURE_PPI] =
1039 		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1040 		gtdt->secure_el1_flags);
1041 
1042 	arch_timer_ppi[PHYS_NONSECURE_PPI] =
1043 		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1044 		gtdt->non_secure_el1_flags);
1045 
1046 	arch_timer_ppi[VIRT_PPI] =
1047 		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1048 		gtdt->virtual_timer_flags);
1049 
1050 	arch_timer_ppi[HYP_PPI] =
1051 		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1052 		gtdt->non_secure_el2_flags);
1053 
1054 	/* Get the frequency from CNTFRQ */
1055 	arch_timer_detect_rate(NULL, NULL);
1056 
1057 	/* Always-on capability */
1058 	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1059 
1060 	arch_timer_init();
1061 	return 0;
1062 }
1063 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1064 #endif
1065