1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arm_arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched_clock.h> 29 #include <linux/acpi.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #define CNTTIDR 0x08 37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 38 39 #define CNTACR(n) (0x40 + ((n) * 4)) 40 #define CNTACR_RPCT BIT(0) 41 #define CNTACR_RVCT BIT(1) 42 #define CNTACR_RFRQ BIT(2) 43 #define CNTACR_RVOFF BIT(3) 44 #define CNTACR_RWVT BIT(4) 45 #define CNTACR_RWPT BIT(5) 46 47 #define CNTVCT_LO 0x08 48 #define CNTVCT_HI 0x0c 49 #define CNTFRQ 0x10 50 #define CNTP_TVAL 0x28 51 #define CNTP_CTL 0x2c 52 #define CNTV_TVAL 0x38 53 #define CNTV_CTL 0x3c 54 55 #define ARCH_CP15_TIMER BIT(0) 56 #define ARCH_MEM_TIMER BIT(1) 57 static unsigned arch_timers_present __initdata; 58 59 static void __iomem *arch_counter_base; 60 61 struct arch_timer { 62 void __iomem *base; 63 struct clock_event_device evt; 64 }; 65 66 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 67 68 static u32 arch_timer_rate; 69 70 enum ppi_nr { 71 PHYS_SECURE_PPI, 72 PHYS_NONSECURE_PPI, 73 VIRT_PPI, 74 HYP_PPI, 75 MAX_TIMER_PPI 76 }; 77 78 static int arch_timer_ppi[MAX_TIMER_PPI]; 79 80 static struct clock_event_device __percpu *arch_timer_evt; 81 82 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI; 83 static bool arch_timer_c3stop; 84 static bool arch_timer_mem_use_virtual; 85 static bool arch_counter_suspend_stop; 86 87 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 88 89 static int __init early_evtstrm_cfg(char *buf) 90 { 91 return strtobool(buf, &evtstrm_enable); 92 } 93 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 94 95 /* 96 * Architected system timer support. 97 */ 98 99 #ifdef CONFIG_FSL_ERRATUM_A008585 100 /* 101 * The number of retries is an arbitrary value well beyond the highest number 102 * of iterations the loop has been observed to take. 103 */ 104 #define __fsl_a008585_read_reg(reg) ({ \ 105 u64 _old, _new; \ 106 int _retries = 200; \ 107 \ 108 do { \ 109 _old = read_sysreg(reg); \ 110 _new = read_sysreg(reg); \ 111 _retries--; \ 112 } while (unlikely(_old != _new) && _retries); \ 113 \ 114 WARN_ON_ONCE(!_retries); \ 115 _new; \ 116 }) 117 118 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 119 { 120 return __fsl_a008585_read_reg(cntp_tval_el0); 121 } 122 123 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 124 { 125 return __fsl_a008585_read_reg(cntv_tval_el0); 126 } 127 128 static u64 notrace fsl_a008585_read_cntvct_el0(void) 129 { 130 return __fsl_a008585_read_reg(cntvct_el0); 131 } 132 #endif 133 134 #ifdef CONFIG_HISILICON_ERRATUM_161010101 135 /* 136 * Verify whether the value of the second read is larger than the first by 137 * less than 32 is the only way to confirm the value is correct, so clear the 138 * lower 5 bits to check whether the difference is greater than 32 or not. 139 * Theoretically the erratum should not occur more than twice in succession 140 * when reading the system counter, but it is possible that some interrupts 141 * may lead to more than twice read errors, triggering the warning, so setting 142 * the number of retries far beyond the number of iterations the loop has been 143 * observed to take. 144 */ 145 #define __hisi_161010101_read_reg(reg) ({ \ 146 u64 _old, _new; \ 147 int _retries = 50; \ 148 \ 149 do { \ 150 _old = read_sysreg(reg); \ 151 _new = read_sysreg(reg); \ 152 _retries--; \ 153 } while (unlikely((_new - _old) >> 5) && _retries); \ 154 \ 155 WARN_ON_ONCE(!_retries); \ 156 _new; \ 157 }) 158 159 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 160 { 161 return __hisi_161010101_read_reg(cntp_tval_el0); 162 } 163 164 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 165 { 166 return __hisi_161010101_read_reg(cntv_tval_el0); 167 } 168 169 static u64 notrace hisi_161010101_read_cntvct_el0(void) 170 { 171 return __hisi_161010101_read_reg(cntvct_el0); 172 } 173 #endif 174 175 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 176 const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL; 177 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 178 179 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 180 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 181 182 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 183 #ifdef CONFIG_FSL_ERRATUM_A008585 184 { 185 .id = "fsl,erratum-a008585", 186 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 187 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 188 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 189 }, 190 #endif 191 #ifdef CONFIG_HISILICON_ERRATUM_161010101 192 { 193 .id = "hisilicon,erratum-161010101", 194 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 195 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 196 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 197 }, 198 #endif 199 }; 200 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 201 202 static __always_inline 203 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 204 struct clock_event_device *clk) 205 { 206 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 207 struct arch_timer *timer = to_arch_timer(clk); 208 switch (reg) { 209 case ARCH_TIMER_REG_CTRL: 210 writel_relaxed(val, timer->base + CNTP_CTL); 211 break; 212 case ARCH_TIMER_REG_TVAL: 213 writel_relaxed(val, timer->base + CNTP_TVAL); 214 break; 215 } 216 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 217 struct arch_timer *timer = to_arch_timer(clk); 218 switch (reg) { 219 case ARCH_TIMER_REG_CTRL: 220 writel_relaxed(val, timer->base + CNTV_CTL); 221 break; 222 case ARCH_TIMER_REG_TVAL: 223 writel_relaxed(val, timer->base + CNTV_TVAL); 224 break; 225 } 226 } else { 227 arch_timer_reg_write_cp15(access, reg, val); 228 } 229 } 230 231 static __always_inline 232 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 233 struct clock_event_device *clk) 234 { 235 u32 val; 236 237 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 238 struct arch_timer *timer = to_arch_timer(clk); 239 switch (reg) { 240 case ARCH_TIMER_REG_CTRL: 241 val = readl_relaxed(timer->base + CNTP_CTL); 242 break; 243 case ARCH_TIMER_REG_TVAL: 244 val = readl_relaxed(timer->base + CNTP_TVAL); 245 break; 246 } 247 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 248 struct arch_timer *timer = to_arch_timer(clk); 249 switch (reg) { 250 case ARCH_TIMER_REG_CTRL: 251 val = readl_relaxed(timer->base + CNTV_CTL); 252 break; 253 case ARCH_TIMER_REG_TVAL: 254 val = readl_relaxed(timer->base + CNTV_TVAL); 255 break; 256 } 257 } else { 258 val = arch_timer_reg_read_cp15(access, reg); 259 } 260 261 return val; 262 } 263 264 static __always_inline irqreturn_t timer_handler(const int access, 265 struct clock_event_device *evt) 266 { 267 unsigned long ctrl; 268 269 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 270 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 271 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 272 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 273 evt->event_handler(evt); 274 return IRQ_HANDLED; 275 } 276 277 return IRQ_NONE; 278 } 279 280 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 281 { 282 struct clock_event_device *evt = dev_id; 283 284 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 285 } 286 287 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 288 { 289 struct clock_event_device *evt = dev_id; 290 291 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 292 } 293 294 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 295 { 296 struct clock_event_device *evt = dev_id; 297 298 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 299 } 300 301 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 302 { 303 struct clock_event_device *evt = dev_id; 304 305 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 306 } 307 308 static __always_inline int timer_shutdown(const int access, 309 struct clock_event_device *clk) 310 { 311 unsigned long ctrl; 312 313 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 314 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 315 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 316 317 return 0; 318 } 319 320 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 321 { 322 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 323 } 324 325 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 326 { 327 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 328 } 329 330 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 331 { 332 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 333 } 334 335 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 336 { 337 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 338 } 339 340 static __always_inline void set_next_event(const int access, unsigned long evt, 341 struct clock_event_device *clk) 342 { 343 unsigned long ctrl; 344 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 345 ctrl |= ARCH_TIMER_CTRL_ENABLE; 346 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 347 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 348 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 349 } 350 351 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 352 static __always_inline void erratum_set_next_event_generic(const int access, 353 unsigned long evt, struct clock_event_device *clk) 354 { 355 unsigned long ctrl; 356 u64 cval = evt + arch_counter_get_cntvct(); 357 358 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 359 ctrl |= ARCH_TIMER_CTRL_ENABLE; 360 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 361 362 if (access == ARCH_TIMER_PHYS_ACCESS) 363 write_sysreg(cval, cntp_cval_el0); 364 else if (access == ARCH_TIMER_VIRT_ACCESS) 365 write_sysreg(cval, cntv_cval_el0); 366 367 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 368 } 369 370 static int erratum_set_next_event_virt(unsigned long evt, 371 struct clock_event_device *clk) 372 { 373 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 374 return 0; 375 } 376 377 static int erratum_set_next_event_phys(unsigned long evt, 378 struct clock_event_device *clk) 379 { 380 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 381 return 0; 382 } 383 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 384 385 static int arch_timer_set_next_event_virt(unsigned long evt, 386 struct clock_event_device *clk) 387 { 388 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 389 return 0; 390 } 391 392 static int arch_timer_set_next_event_phys(unsigned long evt, 393 struct clock_event_device *clk) 394 { 395 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 396 return 0; 397 } 398 399 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 400 struct clock_event_device *clk) 401 { 402 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 403 return 0; 404 } 405 406 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 407 struct clock_event_device *clk) 408 { 409 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 410 return 0; 411 } 412 413 static void erratum_workaround_set_sne(struct clock_event_device *clk) 414 { 415 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 416 if (!static_branch_unlikely(&arch_timer_read_ool_enabled)) 417 return; 418 419 if (arch_timer_uses_ppi == VIRT_PPI) 420 clk->set_next_event = erratum_set_next_event_virt; 421 else 422 clk->set_next_event = erratum_set_next_event_phys; 423 #endif 424 } 425 426 static void __arch_timer_setup(unsigned type, 427 struct clock_event_device *clk) 428 { 429 clk->features = CLOCK_EVT_FEAT_ONESHOT; 430 431 if (type == ARCH_CP15_TIMER) { 432 if (arch_timer_c3stop) 433 clk->features |= CLOCK_EVT_FEAT_C3STOP; 434 clk->name = "arch_sys_timer"; 435 clk->rating = 450; 436 clk->cpumask = cpumask_of(smp_processor_id()); 437 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 438 switch (arch_timer_uses_ppi) { 439 case VIRT_PPI: 440 clk->set_state_shutdown = arch_timer_shutdown_virt; 441 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 442 clk->set_next_event = arch_timer_set_next_event_virt; 443 break; 444 case PHYS_SECURE_PPI: 445 case PHYS_NONSECURE_PPI: 446 case HYP_PPI: 447 clk->set_state_shutdown = arch_timer_shutdown_phys; 448 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 449 clk->set_next_event = arch_timer_set_next_event_phys; 450 break; 451 default: 452 BUG(); 453 } 454 455 erratum_workaround_set_sne(clk); 456 } else { 457 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 458 clk->name = "arch_mem_timer"; 459 clk->rating = 400; 460 clk->cpumask = cpu_all_mask; 461 if (arch_timer_mem_use_virtual) { 462 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 463 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 464 clk->set_next_event = 465 arch_timer_set_next_event_virt_mem; 466 } else { 467 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 468 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 469 clk->set_next_event = 470 arch_timer_set_next_event_phys_mem; 471 } 472 } 473 474 clk->set_state_shutdown(clk); 475 476 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 477 } 478 479 static void arch_timer_evtstrm_enable(int divider) 480 { 481 u32 cntkctl = arch_timer_get_cntkctl(); 482 483 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 484 /* Set the divider and enable virtual event stream */ 485 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 486 | ARCH_TIMER_VIRT_EVT_EN; 487 arch_timer_set_cntkctl(cntkctl); 488 elf_hwcap |= HWCAP_EVTSTRM; 489 #ifdef CONFIG_COMPAT 490 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 491 #endif 492 } 493 494 static void arch_timer_configure_evtstream(void) 495 { 496 int evt_stream_div, pos; 497 498 /* Find the closest power of two to the divisor */ 499 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 500 pos = fls(evt_stream_div); 501 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 502 pos--; 503 /* enable event stream */ 504 arch_timer_evtstrm_enable(min(pos, 15)); 505 } 506 507 static void arch_counter_set_user_access(void) 508 { 509 u32 cntkctl = arch_timer_get_cntkctl(); 510 511 /* Disable user access to the timers and the physical counter */ 512 /* Also disable virtual event stream */ 513 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 514 | ARCH_TIMER_USR_VT_ACCESS_EN 515 | ARCH_TIMER_VIRT_EVT_EN 516 | ARCH_TIMER_USR_PCT_ACCESS_EN); 517 518 /* Enable user access to the virtual counter */ 519 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 520 521 arch_timer_set_cntkctl(cntkctl); 522 } 523 524 static bool arch_timer_has_nonsecure_ppi(void) 525 { 526 return (arch_timer_uses_ppi == PHYS_SECURE_PPI && 527 arch_timer_ppi[PHYS_NONSECURE_PPI]); 528 } 529 530 static u32 check_ppi_trigger(int irq) 531 { 532 u32 flags = irq_get_trigger_type(irq); 533 534 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 535 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 536 pr_warn("WARNING: Please fix your firmware\n"); 537 flags = IRQF_TRIGGER_LOW; 538 } 539 540 return flags; 541 } 542 543 static int arch_timer_starting_cpu(unsigned int cpu) 544 { 545 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 546 u32 flags; 547 548 __arch_timer_setup(ARCH_CP15_TIMER, clk); 549 550 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 551 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 552 553 if (arch_timer_has_nonsecure_ppi()) { 554 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]); 555 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags); 556 } 557 558 arch_counter_set_user_access(); 559 if (evtstrm_enable) 560 arch_timer_configure_evtstream(); 561 562 return 0; 563 } 564 565 static void 566 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) 567 { 568 /* Who has more than one independent system counter? */ 569 if (arch_timer_rate) 570 return; 571 572 /* 573 * Try to determine the frequency from the device tree or CNTFRQ, 574 * if ACPI is enabled, get the frequency from CNTFRQ ONLY. 575 */ 576 if (!acpi_disabled || 577 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { 578 if (cntbase) 579 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); 580 else 581 arch_timer_rate = arch_timer_get_cntfrq(); 582 } 583 584 /* Check the timer frequency. */ 585 if (arch_timer_rate == 0) 586 pr_warn("Architected timer frequency not available\n"); 587 } 588 589 static void arch_timer_banner(unsigned type) 590 { 591 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 592 type & ARCH_CP15_TIMER ? "cp15" : "", 593 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", 594 type & ARCH_MEM_TIMER ? "mmio" : "", 595 (unsigned long)arch_timer_rate / 1000000, 596 (unsigned long)(arch_timer_rate / 10000) % 100, 597 type & ARCH_CP15_TIMER ? 598 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" : 599 "", 600 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", 601 type & ARCH_MEM_TIMER ? 602 arch_timer_mem_use_virtual ? "virt" : "phys" : 603 ""); 604 } 605 606 u32 arch_timer_get_rate(void) 607 { 608 return arch_timer_rate; 609 } 610 611 static u64 arch_counter_get_cntvct_mem(void) 612 { 613 u32 vct_lo, vct_hi, tmp_hi; 614 615 do { 616 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 617 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 618 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 619 } while (vct_hi != tmp_hi); 620 621 return ((u64) vct_hi << 32) | vct_lo; 622 } 623 624 /* 625 * Default to cp15 based access because arm64 uses this function for 626 * sched_clock() before DT is probed and the cp15 method is guaranteed 627 * to exist on arm64. arm doesn't use this before DT is probed so even 628 * if we don't have the cp15 accessors we won't have a problem. 629 */ 630 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 631 632 static u64 arch_counter_read(struct clocksource *cs) 633 { 634 return arch_timer_read_counter(); 635 } 636 637 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 638 { 639 return arch_timer_read_counter(); 640 } 641 642 static struct clocksource clocksource_counter = { 643 .name = "arch_sys_counter", 644 .rating = 400, 645 .read = arch_counter_read, 646 .mask = CLOCKSOURCE_MASK(56), 647 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 648 }; 649 650 static struct cyclecounter cyclecounter __ro_after_init = { 651 .read = arch_counter_read_cc, 652 .mask = CLOCKSOURCE_MASK(56), 653 }; 654 655 static struct arch_timer_kvm_info arch_timer_kvm_info; 656 657 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 658 { 659 return &arch_timer_kvm_info; 660 } 661 662 static void __init arch_counter_register(unsigned type) 663 { 664 u64 start_count; 665 666 /* Register the CP15 based counter if we have one */ 667 if (type & ARCH_CP15_TIMER) { 668 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI) 669 arch_timer_read_counter = arch_counter_get_cntvct; 670 else 671 arch_timer_read_counter = arch_counter_get_cntpct; 672 673 clocksource_counter.archdata.vdso_direct = true; 674 675 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 676 /* 677 * Don't use the vdso fastpath if errata require using 678 * the out-of-line counter accessor. 679 */ 680 if (static_branch_unlikely(&arch_timer_read_ool_enabled)) 681 clocksource_counter.archdata.vdso_direct = false; 682 #endif 683 } else { 684 arch_timer_read_counter = arch_counter_get_cntvct_mem; 685 } 686 687 if (!arch_counter_suspend_stop) 688 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 689 start_count = arch_timer_read_counter(); 690 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 691 cyclecounter.mult = clocksource_counter.mult; 692 cyclecounter.shift = clocksource_counter.shift; 693 timecounter_init(&arch_timer_kvm_info.timecounter, 694 &cyclecounter, start_count); 695 696 /* 56 bits minimum, so we assume worst case rollover */ 697 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 698 } 699 700 static void arch_timer_stop(struct clock_event_device *clk) 701 { 702 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", 703 clk->irq, smp_processor_id()); 704 705 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 706 if (arch_timer_has_nonsecure_ppi()) 707 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); 708 709 clk->set_state_shutdown(clk); 710 } 711 712 static int arch_timer_dying_cpu(unsigned int cpu) 713 { 714 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 715 716 arch_timer_stop(clk); 717 return 0; 718 } 719 720 #ifdef CONFIG_CPU_PM 721 static unsigned int saved_cntkctl; 722 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 723 unsigned long action, void *hcpu) 724 { 725 if (action == CPU_PM_ENTER) 726 saved_cntkctl = arch_timer_get_cntkctl(); 727 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 728 arch_timer_set_cntkctl(saved_cntkctl); 729 return NOTIFY_OK; 730 } 731 732 static struct notifier_block arch_timer_cpu_pm_notifier = { 733 .notifier_call = arch_timer_cpu_pm_notify, 734 }; 735 736 static int __init arch_timer_cpu_pm_init(void) 737 { 738 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 739 } 740 741 static void __init arch_timer_cpu_pm_deinit(void) 742 { 743 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 744 } 745 746 #else 747 static int __init arch_timer_cpu_pm_init(void) 748 { 749 return 0; 750 } 751 752 static void __init arch_timer_cpu_pm_deinit(void) 753 { 754 } 755 #endif 756 757 static int __init arch_timer_register(void) 758 { 759 int err; 760 int ppi; 761 762 arch_timer_evt = alloc_percpu(struct clock_event_device); 763 if (!arch_timer_evt) { 764 err = -ENOMEM; 765 goto out; 766 } 767 768 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 769 switch (arch_timer_uses_ppi) { 770 case VIRT_PPI: 771 err = request_percpu_irq(ppi, arch_timer_handler_virt, 772 "arch_timer", arch_timer_evt); 773 break; 774 case PHYS_SECURE_PPI: 775 case PHYS_NONSECURE_PPI: 776 err = request_percpu_irq(ppi, arch_timer_handler_phys, 777 "arch_timer", arch_timer_evt); 778 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { 779 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; 780 err = request_percpu_irq(ppi, arch_timer_handler_phys, 781 "arch_timer", arch_timer_evt); 782 if (err) 783 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 784 arch_timer_evt); 785 } 786 break; 787 case HYP_PPI: 788 err = request_percpu_irq(ppi, arch_timer_handler_phys, 789 "arch_timer", arch_timer_evt); 790 break; 791 default: 792 BUG(); 793 } 794 795 if (err) { 796 pr_err("arch_timer: can't register interrupt %d (%d)\n", 797 ppi, err); 798 goto out_free; 799 } 800 801 err = arch_timer_cpu_pm_init(); 802 if (err) 803 goto out_unreg_notify; 804 805 806 /* Register and immediately configure the timer on the boot CPU */ 807 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 808 "clockevents/arm/arch_timer:starting", 809 arch_timer_starting_cpu, arch_timer_dying_cpu); 810 if (err) 811 goto out_unreg_cpupm; 812 return 0; 813 814 out_unreg_cpupm: 815 arch_timer_cpu_pm_deinit(); 816 817 out_unreg_notify: 818 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 819 if (arch_timer_has_nonsecure_ppi()) 820 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 821 arch_timer_evt); 822 823 out_free: 824 free_percpu(arch_timer_evt); 825 out: 826 return err; 827 } 828 829 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 830 { 831 int ret; 832 irq_handler_t func; 833 struct arch_timer *t; 834 835 t = kzalloc(sizeof(*t), GFP_KERNEL); 836 if (!t) 837 return -ENOMEM; 838 839 t->base = base; 840 t->evt.irq = irq; 841 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); 842 843 if (arch_timer_mem_use_virtual) 844 func = arch_timer_handler_virt_mem; 845 else 846 func = arch_timer_handler_phys_mem; 847 848 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 849 if (ret) { 850 pr_err("arch_timer: Failed to request mem timer irq\n"); 851 kfree(t); 852 } 853 854 return ret; 855 } 856 857 static const struct of_device_id arch_timer_of_match[] __initconst = { 858 { .compatible = "arm,armv7-timer", }, 859 { .compatible = "arm,armv8-timer", }, 860 {}, 861 }; 862 863 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 864 { .compatible = "arm,armv7-timer-mem", }, 865 {}, 866 }; 867 868 static bool __init 869 arch_timer_needs_probing(int type, const struct of_device_id *matches) 870 { 871 struct device_node *dn; 872 bool needs_probing = false; 873 874 dn = of_find_matching_node(NULL, matches); 875 if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) 876 needs_probing = true; 877 of_node_put(dn); 878 879 return needs_probing; 880 } 881 882 static int __init arch_timer_common_init(void) 883 { 884 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; 885 886 /* Wait until both nodes are probed if we have two timers */ 887 if ((arch_timers_present & mask) != mask) { 888 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) 889 return 0; 890 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) 891 return 0; 892 } 893 894 arch_timer_banner(arch_timers_present); 895 arch_counter_register(arch_timers_present); 896 return arch_timer_arch_init(); 897 } 898 899 static int __init arch_timer_init(void) 900 { 901 int ret; 902 /* 903 * If HYP mode is available, we know that the physical timer 904 * has been configured to be accessible from PL1. Use it, so 905 * that a guest can use the virtual timer instead. 906 * 907 * If no interrupt provided for virtual timer, we'll have to 908 * stick to the physical timer. It'd better be accessible... 909 * 910 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 911 * accesses to CNTP_*_EL1 registers are silently redirected to 912 * their CNTHP_*_EL2 counterparts, and use a different PPI 913 * number. 914 */ 915 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { 916 bool has_ppi; 917 918 if (is_kernel_in_hyp_mode()) { 919 arch_timer_uses_ppi = HYP_PPI; 920 has_ppi = !!arch_timer_ppi[HYP_PPI]; 921 } else { 922 arch_timer_uses_ppi = PHYS_SECURE_PPI; 923 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] || 924 !!arch_timer_ppi[PHYS_NONSECURE_PPI]); 925 } 926 927 if (!has_ppi) { 928 pr_warn("arch_timer: No interrupt available, giving up\n"); 929 return -EINVAL; 930 } 931 } 932 933 ret = arch_timer_register(); 934 if (ret) 935 return ret; 936 937 ret = arch_timer_common_init(); 938 if (ret) 939 return ret; 940 941 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI]; 942 943 return 0; 944 } 945 946 static int __init arch_timer_of_init(struct device_node *np) 947 { 948 int i; 949 950 if (arch_timers_present & ARCH_CP15_TIMER) { 951 pr_warn("arch_timer: multiple nodes in dt, skipping\n"); 952 return 0; 953 } 954 955 arch_timers_present |= ARCH_CP15_TIMER; 956 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) 957 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 958 959 arch_timer_detect_rate(NULL, np); 960 961 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 962 963 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 964 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 965 if (of_property_read_bool(np, ool_workarounds[i].id)) { 966 timer_unstable_counter_workaround = &ool_workarounds[i]; 967 static_branch_enable(&arch_timer_read_ool_enabled); 968 pr_info("arch_timer: Enabling workaround for %s\n", 969 timer_unstable_counter_workaround->id); 970 break; 971 } 972 } 973 #endif 974 975 /* 976 * If we cannot rely on firmware initializing the timer registers then 977 * we should use the physical timers instead. 978 */ 979 if (IS_ENABLED(CONFIG_ARM) && 980 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 981 arch_timer_uses_ppi = PHYS_SECURE_PPI; 982 983 /* On some systems, the counter stops ticking when in suspend. */ 984 arch_counter_suspend_stop = of_property_read_bool(np, 985 "arm,no-tick-in-suspend"); 986 987 return arch_timer_init(); 988 } 989 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 990 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 991 992 static int __init arch_timer_mem_init(struct device_node *np) 993 { 994 struct device_node *frame, *best_frame = NULL; 995 void __iomem *cntctlbase, *base; 996 unsigned int irq, ret = -EINVAL; 997 u32 cnttidr; 998 999 arch_timers_present |= ARCH_MEM_TIMER; 1000 cntctlbase = of_iomap(np, 0); 1001 if (!cntctlbase) { 1002 pr_err("arch_timer: Can't find CNTCTLBase\n"); 1003 return -ENXIO; 1004 } 1005 1006 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1007 1008 /* 1009 * Try to find a virtual capable frame. Otherwise fall back to a 1010 * physical capable frame. 1011 */ 1012 for_each_available_child_of_node(np, frame) { 1013 int n; 1014 u32 cntacr; 1015 1016 if (of_property_read_u32(frame, "frame-number", &n)) { 1017 pr_err("arch_timer: Missing frame-number\n"); 1018 of_node_put(frame); 1019 goto out; 1020 } 1021 1022 /* Try enabling everything, and see what sticks */ 1023 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1024 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1025 writel_relaxed(cntacr, cntctlbase + CNTACR(n)); 1026 cntacr = readl_relaxed(cntctlbase + CNTACR(n)); 1027 1028 if ((cnttidr & CNTTIDR_VIRT(n)) && 1029 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1030 of_node_put(best_frame); 1031 best_frame = frame; 1032 arch_timer_mem_use_virtual = true; 1033 break; 1034 } 1035 1036 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1037 continue; 1038 1039 of_node_put(best_frame); 1040 best_frame = of_node_get(frame); 1041 } 1042 1043 ret= -ENXIO; 1044 base = arch_counter_base = of_io_request_and_map(best_frame, 0, 1045 "arch_mem_timer"); 1046 if (IS_ERR(base)) { 1047 pr_err("arch_timer: Can't map frame's registers\n"); 1048 goto out; 1049 } 1050 1051 if (arch_timer_mem_use_virtual) 1052 irq = irq_of_parse_and_map(best_frame, 1); 1053 else 1054 irq = irq_of_parse_and_map(best_frame, 0); 1055 1056 ret = -EINVAL; 1057 if (!irq) { 1058 pr_err("arch_timer: Frame missing %s irq", 1059 arch_timer_mem_use_virtual ? "virt" : "phys"); 1060 goto out; 1061 } 1062 1063 arch_timer_detect_rate(base, np); 1064 ret = arch_timer_mem_register(base, irq); 1065 if (ret) 1066 goto out; 1067 1068 return arch_timer_common_init(); 1069 out: 1070 iounmap(cntctlbase); 1071 of_node_put(best_frame); 1072 return ret; 1073 } 1074 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1075 arch_timer_mem_init); 1076 1077 #ifdef CONFIG_ACPI 1078 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) 1079 { 1080 int trigger, polarity; 1081 1082 if (!interrupt) 1083 return 0; 1084 1085 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE 1086 : ACPI_LEVEL_SENSITIVE; 1087 1088 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW 1089 : ACPI_ACTIVE_HIGH; 1090 1091 return acpi_register_gsi(NULL, interrupt, trigger, polarity); 1092 } 1093 1094 /* Initialize per-processor generic timer */ 1095 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1096 { 1097 struct acpi_table_gtdt *gtdt; 1098 1099 if (arch_timers_present & ARCH_CP15_TIMER) { 1100 pr_warn("arch_timer: already initialized, skipping\n"); 1101 return -EINVAL; 1102 } 1103 1104 gtdt = container_of(table, struct acpi_table_gtdt, header); 1105 1106 arch_timers_present |= ARCH_CP15_TIMER; 1107 1108 arch_timer_ppi[PHYS_SECURE_PPI] = 1109 map_generic_timer_interrupt(gtdt->secure_el1_interrupt, 1110 gtdt->secure_el1_flags); 1111 1112 arch_timer_ppi[PHYS_NONSECURE_PPI] = 1113 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, 1114 gtdt->non_secure_el1_flags); 1115 1116 arch_timer_ppi[VIRT_PPI] = 1117 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, 1118 gtdt->virtual_timer_flags); 1119 1120 arch_timer_ppi[HYP_PPI] = 1121 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, 1122 gtdt->non_secure_el2_flags); 1123 1124 /* Get the frequency from CNTFRQ */ 1125 arch_timer_detect_rate(NULL, NULL); 1126 1127 /* Always-on capability */ 1128 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); 1129 1130 arch_timer_init(); 1131 return 0; 1132 } 1133 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1134 #endif 1135