1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #define CNTTIDR		0x08
37 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
38 
39 #define CNTACR(n)	(0x40 + ((n) * 4))
40 #define CNTACR_RPCT	BIT(0)
41 #define CNTACR_RVCT	BIT(1)
42 #define CNTACR_RFRQ	BIT(2)
43 #define CNTACR_RVOFF	BIT(3)
44 #define CNTACR_RWVT	BIT(4)
45 #define CNTACR_RWPT	BIT(5)
46 
47 #define CNTVCT_LO	0x08
48 #define CNTVCT_HI	0x0c
49 #define CNTFRQ		0x10
50 #define CNTP_TVAL	0x28
51 #define CNTP_CTL	0x2c
52 #define CNTV_TVAL	0x38
53 #define CNTV_CTL	0x3c
54 
55 #define ARCH_CP15_TIMER	BIT(0)
56 #define ARCH_MEM_TIMER	BIT(1)
57 static unsigned arch_timers_present __initdata;
58 
59 static void __iomem *arch_counter_base;
60 
61 struct arch_timer {
62 	void __iomem *base;
63 	struct clock_event_device evt;
64 };
65 
66 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
67 
68 static u32 arch_timer_rate;
69 
70 enum ppi_nr {
71 	PHYS_SECURE_PPI,
72 	PHYS_NONSECURE_PPI,
73 	VIRT_PPI,
74 	HYP_PPI,
75 	MAX_TIMER_PPI
76 };
77 
78 static int arch_timer_ppi[MAX_TIMER_PPI];
79 
80 static struct clock_event_device __percpu *arch_timer_evt;
81 
82 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
83 static bool arch_timer_c3stop;
84 static bool arch_timer_mem_use_virtual;
85 static bool arch_counter_suspend_stop;
86 
87 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
88 
89 static int __init early_evtstrm_cfg(char *buf)
90 {
91 	return strtobool(buf, &evtstrm_enable);
92 }
93 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
94 
95 /*
96  * Architected system timer support.
97  */
98 
99 #ifdef CONFIG_FSL_ERRATUM_A008585
100 /*
101  * The number of retries is an arbitrary value well beyond the highest number
102  * of iterations the loop has been observed to take.
103  */
104 #define __fsl_a008585_read_reg(reg) ({			\
105 	u64 _old, _new;					\
106 	int _retries = 200;				\
107 							\
108 	do {						\
109 		_old = read_sysreg(reg);		\
110 		_new = read_sysreg(reg);		\
111 		_retries--;				\
112 	} while (unlikely(_old != _new) && _retries);	\
113 							\
114 	WARN_ON_ONCE(!_retries);			\
115 	_new;						\
116 })
117 
118 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
119 {
120 	return __fsl_a008585_read_reg(cntp_tval_el0);
121 }
122 
123 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
124 {
125 	return __fsl_a008585_read_reg(cntv_tval_el0);
126 }
127 
128 static u64 notrace fsl_a008585_read_cntvct_el0(void)
129 {
130 	return __fsl_a008585_read_reg(cntvct_el0);
131 }
132 #endif
133 
134 #ifdef CONFIG_HISILICON_ERRATUM_161010101
135 /*
136  * Verify whether the value of the second read is larger than the first by
137  * less than 32 is the only way to confirm the value is correct, so clear the
138  * lower 5 bits to check whether the difference is greater than 32 or not.
139  * Theoretically the erratum should not occur more than twice in succession
140  * when reading the system counter, but it is possible that some interrupts
141  * may lead to more than twice read errors, triggering the warning, so setting
142  * the number of retries far beyond the number of iterations the loop has been
143  * observed to take.
144  */
145 #define __hisi_161010101_read_reg(reg) ({				\
146 	u64 _old, _new;						\
147 	int _retries = 50;					\
148 								\
149 	do {							\
150 		_old = read_sysreg(reg);			\
151 		_new = read_sysreg(reg);			\
152 		_retries--;					\
153 	} while (unlikely((_new - _old) >> 5) && _retries);	\
154 								\
155 	WARN_ON_ONCE(!_retries);				\
156 	_new;							\
157 })
158 
159 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
160 {
161 	return __hisi_161010101_read_reg(cntp_tval_el0);
162 }
163 
164 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
165 {
166 	return __hisi_161010101_read_reg(cntv_tval_el0);
167 }
168 
169 static u64 notrace hisi_161010101_read_cntvct_el0(void)
170 {
171 	return __hisi_161010101_read_reg(cntvct_el0);
172 }
173 #endif
174 
175 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
176 const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
177 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
178 
179 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
180 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
181 
182 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
183 #ifdef CONFIG_FSL_ERRATUM_A008585
184 	{
185 		.id = "fsl,erratum-a008585",
186 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
187 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
188 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
189 	},
190 #endif
191 #ifdef CONFIG_HISILICON_ERRATUM_161010101
192 	{
193 		.id = "hisilicon,erratum-161010101",
194 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
195 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
196 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
197 	},
198 #endif
199 };
200 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
201 
202 static __always_inline
203 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
204 			  struct clock_event_device *clk)
205 {
206 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
207 		struct arch_timer *timer = to_arch_timer(clk);
208 		switch (reg) {
209 		case ARCH_TIMER_REG_CTRL:
210 			writel_relaxed(val, timer->base + CNTP_CTL);
211 			break;
212 		case ARCH_TIMER_REG_TVAL:
213 			writel_relaxed(val, timer->base + CNTP_TVAL);
214 			break;
215 		}
216 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
217 		struct arch_timer *timer = to_arch_timer(clk);
218 		switch (reg) {
219 		case ARCH_TIMER_REG_CTRL:
220 			writel_relaxed(val, timer->base + CNTV_CTL);
221 			break;
222 		case ARCH_TIMER_REG_TVAL:
223 			writel_relaxed(val, timer->base + CNTV_TVAL);
224 			break;
225 		}
226 	} else {
227 		arch_timer_reg_write_cp15(access, reg, val);
228 	}
229 }
230 
231 static __always_inline
232 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
233 			struct clock_event_device *clk)
234 {
235 	u32 val;
236 
237 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
238 		struct arch_timer *timer = to_arch_timer(clk);
239 		switch (reg) {
240 		case ARCH_TIMER_REG_CTRL:
241 			val = readl_relaxed(timer->base + CNTP_CTL);
242 			break;
243 		case ARCH_TIMER_REG_TVAL:
244 			val = readl_relaxed(timer->base + CNTP_TVAL);
245 			break;
246 		}
247 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
248 		struct arch_timer *timer = to_arch_timer(clk);
249 		switch (reg) {
250 		case ARCH_TIMER_REG_CTRL:
251 			val = readl_relaxed(timer->base + CNTV_CTL);
252 			break;
253 		case ARCH_TIMER_REG_TVAL:
254 			val = readl_relaxed(timer->base + CNTV_TVAL);
255 			break;
256 		}
257 	} else {
258 		val = arch_timer_reg_read_cp15(access, reg);
259 	}
260 
261 	return val;
262 }
263 
264 static __always_inline irqreturn_t timer_handler(const int access,
265 					struct clock_event_device *evt)
266 {
267 	unsigned long ctrl;
268 
269 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
270 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
271 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
272 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
273 		evt->event_handler(evt);
274 		return IRQ_HANDLED;
275 	}
276 
277 	return IRQ_NONE;
278 }
279 
280 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
281 {
282 	struct clock_event_device *evt = dev_id;
283 
284 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
285 }
286 
287 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
288 {
289 	struct clock_event_device *evt = dev_id;
290 
291 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
292 }
293 
294 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
295 {
296 	struct clock_event_device *evt = dev_id;
297 
298 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
299 }
300 
301 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
302 {
303 	struct clock_event_device *evt = dev_id;
304 
305 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
306 }
307 
308 static __always_inline int timer_shutdown(const int access,
309 					  struct clock_event_device *clk)
310 {
311 	unsigned long ctrl;
312 
313 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
314 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
315 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
316 
317 	return 0;
318 }
319 
320 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
321 {
322 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
323 }
324 
325 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
326 {
327 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
328 }
329 
330 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
331 {
332 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
333 }
334 
335 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
336 {
337 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
338 }
339 
340 static __always_inline void set_next_event(const int access, unsigned long evt,
341 					   struct clock_event_device *clk)
342 {
343 	unsigned long ctrl;
344 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
345 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
346 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
347 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
348 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
349 }
350 
351 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
352 static __always_inline void erratum_set_next_event_generic(const int access,
353 		unsigned long evt, struct clock_event_device *clk)
354 {
355 	unsigned long ctrl;
356 	u64 cval = evt + arch_counter_get_cntvct();
357 
358 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
359 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
360 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
361 
362 	if (access == ARCH_TIMER_PHYS_ACCESS)
363 		write_sysreg(cval, cntp_cval_el0);
364 	else if (access == ARCH_TIMER_VIRT_ACCESS)
365 		write_sysreg(cval, cntv_cval_el0);
366 
367 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
368 }
369 
370 static int erratum_set_next_event_virt(unsigned long evt,
371 					   struct clock_event_device *clk)
372 {
373 	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
374 	return 0;
375 }
376 
377 static int erratum_set_next_event_phys(unsigned long evt,
378 					   struct clock_event_device *clk)
379 {
380 	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
381 	return 0;
382 }
383 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
384 
385 static int arch_timer_set_next_event_virt(unsigned long evt,
386 					  struct clock_event_device *clk)
387 {
388 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
389 	return 0;
390 }
391 
392 static int arch_timer_set_next_event_phys(unsigned long evt,
393 					  struct clock_event_device *clk)
394 {
395 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
396 	return 0;
397 }
398 
399 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
400 					      struct clock_event_device *clk)
401 {
402 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
403 	return 0;
404 }
405 
406 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
407 					      struct clock_event_device *clk)
408 {
409 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
410 	return 0;
411 }
412 
413 static void erratum_workaround_set_sne(struct clock_event_device *clk)
414 {
415 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
416 	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
417 		return;
418 
419 	if (arch_timer_uses_ppi == VIRT_PPI)
420 		clk->set_next_event = erratum_set_next_event_virt;
421 	else
422 		clk->set_next_event = erratum_set_next_event_phys;
423 #endif
424 }
425 
426 static void __arch_timer_setup(unsigned type,
427 			       struct clock_event_device *clk)
428 {
429 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
430 
431 	if (type == ARCH_CP15_TIMER) {
432 		if (arch_timer_c3stop)
433 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
434 		clk->name = "arch_sys_timer";
435 		clk->rating = 450;
436 		clk->cpumask = cpumask_of(smp_processor_id());
437 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
438 		switch (arch_timer_uses_ppi) {
439 		case VIRT_PPI:
440 			clk->set_state_shutdown = arch_timer_shutdown_virt;
441 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
442 			clk->set_next_event = arch_timer_set_next_event_virt;
443 			break;
444 		case PHYS_SECURE_PPI:
445 		case PHYS_NONSECURE_PPI:
446 		case HYP_PPI:
447 			clk->set_state_shutdown = arch_timer_shutdown_phys;
448 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
449 			clk->set_next_event = arch_timer_set_next_event_phys;
450 			break;
451 		default:
452 			BUG();
453 		}
454 
455 		erratum_workaround_set_sne(clk);
456 	} else {
457 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
458 		clk->name = "arch_mem_timer";
459 		clk->rating = 400;
460 		clk->cpumask = cpu_all_mask;
461 		if (arch_timer_mem_use_virtual) {
462 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
463 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
464 			clk->set_next_event =
465 				arch_timer_set_next_event_virt_mem;
466 		} else {
467 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
468 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
469 			clk->set_next_event =
470 				arch_timer_set_next_event_phys_mem;
471 		}
472 	}
473 
474 	clk->set_state_shutdown(clk);
475 
476 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
477 }
478 
479 static void arch_timer_evtstrm_enable(int divider)
480 {
481 	u32 cntkctl = arch_timer_get_cntkctl();
482 
483 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
484 	/* Set the divider and enable virtual event stream */
485 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
486 			| ARCH_TIMER_VIRT_EVT_EN;
487 	arch_timer_set_cntkctl(cntkctl);
488 	elf_hwcap |= HWCAP_EVTSTRM;
489 #ifdef CONFIG_COMPAT
490 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
491 #endif
492 }
493 
494 static void arch_timer_configure_evtstream(void)
495 {
496 	int evt_stream_div, pos;
497 
498 	/* Find the closest power of two to the divisor */
499 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
500 	pos = fls(evt_stream_div);
501 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
502 		pos--;
503 	/* enable event stream */
504 	arch_timer_evtstrm_enable(min(pos, 15));
505 }
506 
507 static void arch_counter_set_user_access(void)
508 {
509 	u32 cntkctl = arch_timer_get_cntkctl();
510 
511 	/* Disable user access to the timers and the physical counter */
512 	/* Also disable virtual event stream */
513 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
514 			| ARCH_TIMER_USR_VT_ACCESS_EN
515 			| ARCH_TIMER_VIRT_EVT_EN
516 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
517 
518 	/* Enable user access to the virtual counter */
519 	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
520 
521 	arch_timer_set_cntkctl(cntkctl);
522 }
523 
524 static bool arch_timer_has_nonsecure_ppi(void)
525 {
526 	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
527 		arch_timer_ppi[PHYS_NONSECURE_PPI]);
528 }
529 
530 static u32 check_ppi_trigger(int irq)
531 {
532 	u32 flags = irq_get_trigger_type(irq);
533 
534 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
535 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
536 		pr_warn("WARNING: Please fix your firmware\n");
537 		flags = IRQF_TRIGGER_LOW;
538 	}
539 
540 	return flags;
541 }
542 
543 static int arch_timer_starting_cpu(unsigned int cpu)
544 {
545 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
546 	u32 flags;
547 
548 	__arch_timer_setup(ARCH_CP15_TIMER, clk);
549 
550 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
551 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
552 
553 	if (arch_timer_has_nonsecure_ppi()) {
554 		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
555 		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
556 	}
557 
558 	arch_counter_set_user_access();
559 	if (evtstrm_enable)
560 		arch_timer_configure_evtstream();
561 
562 	return 0;
563 }
564 
565 static void
566 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
567 {
568 	/* Who has more than one independent system counter? */
569 	if (arch_timer_rate)
570 		return;
571 
572 	/*
573 	 * Try to determine the frequency from the device tree or CNTFRQ,
574 	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
575 	 */
576 	if (!acpi_disabled ||
577 	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
578 		if (cntbase)
579 			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
580 		else
581 			arch_timer_rate = arch_timer_get_cntfrq();
582 	}
583 
584 	/* Check the timer frequency. */
585 	if (arch_timer_rate == 0)
586 		pr_warn("Architected timer frequency not available\n");
587 }
588 
589 static void arch_timer_banner(unsigned type)
590 {
591 	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
592 		     type & ARCH_CP15_TIMER ? "cp15" : "",
593 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
594 		     type & ARCH_MEM_TIMER ? "mmio" : "",
595 		     (unsigned long)arch_timer_rate / 1000000,
596 		     (unsigned long)(arch_timer_rate / 10000) % 100,
597 		     type & ARCH_CP15_TIMER ?
598 		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
599 			"",
600 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
601 		     type & ARCH_MEM_TIMER ?
602 			arch_timer_mem_use_virtual ? "virt" : "phys" :
603 			"");
604 }
605 
606 u32 arch_timer_get_rate(void)
607 {
608 	return arch_timer_rate;
609 }
610 
611 static u64 arch_counter_get_cntvct_mem(void)
612 {
613 	u32 vct_lo, vct_hi, tmp_hi;
614 
615 	do {
616 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
617 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
618 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
619 	} while (vct_hi != tmp_hi);
620 
621 	return ((u64) vct_hi << 32) | vct_lo;
622 }
623 
624 /*
625  * Default to cp15 based access because arm64 uses this function for
626  * sched_clock() before DT is probed and the cp15 method is guaranteed
627  * to exist on arm64. arm doesn't use this before DT is probed so even
628  * if we don't have the cp15 accessors we won't have a problem.
629  */
630 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
631 
632 static u64 arch_counter_read(struct clocksource *cs)
633 {
634 	return arch_timer_read_counter();
635 }
636 
637 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
638 {
639 	return arch_timer_read_counter();
640 }
641 
642 static struct clocksource clocksource_counter = {
643 	.name	= "arch_sys_counter",
644 	.rating	= 400,
645 	.read	= arch_counter_read,
646 	.mask	= CLOCKSOURCE_MASK(56),
647 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
648 };
649 
650 static struct cyclecounter cyclecounter __ro_after_init = {
651 	.read	= arch_counter_read_cc,
652 	.mask	= CLOCKSOURCE_MASK(56),
653 };
654 
655 static struct arch_timer_kvm_info arch_timer_kvm_info;
656 
657 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
658 {
659 	return &arch_timer_kvm_info;
660 }
661 
662 static void __init arch_counter_register(unsigned type)
663 {
664 	u64 start_count;
665 
666 	/* Register the CP15 based counter if we have one */
667 	if (type & ARCH_CP15_TIMER) {
668 		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
669 			arch_timer_read_counter = arch_counter_get_cntvct;
670 		else
671 			arch_timer_read_counter = arch_counter_get_cntpct;
672 
673 		clocksource_counter.archdata.vdso_direct = true;
674 
675 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
676 		/*
677 		 * Don't use the vdso fastpath if errata require using
678 		 * the out-of-line counter accessor.
679 		 */
680 		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
681 			clocksource_counter.archdata.vdso_direct = false;
682 #endif
683 	} else {
684 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
685 	}
686 
687 	if (!arch_counter_suspend_stop)
688 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
689 	start_count = arch_timer_read_counter();
690 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
691 	cyclecounter.mult = clocksource_counter.mult;
692 	cyclecounter.shift = clocksource_counter.shift;
693 	timecounter_init(&arch_timer_kvm_info.timecounter,
694 			 &cyclecounter, start_count);
695 
696 	/* 56 bits minimum, so we assume worst case rollover */
697 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
698 }
699 
700 static void arch_timer_stop(struct clock_event_device *clk)
701 {
702 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
703 		 clk->irq, smp_processor_id());
704 
705 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
706 	if (arch_timer_has_nonsecure_ppi())
707 		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
708 
709 	clk->set_state_shutdown(clk);
710 }
711 
712 static int arch_timer_dying_cpu(unsigned int cpu)
713 {
714 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
715 
716 	arch_timer_stop(clk);
717 	return 0;
718 }
719 
720 #ifdef CONFIG_CPU_PM
721 static unsigned int saved_cntkctl;
722 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
723 				    unsigned long action, void *hcpu)
724 {
725 	if (action == CPU_PM_ENTER)
726 		saved_cntkctl = arch_timer_get_cntkctl();
727 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
728 		arch_timer_set_cntkctl(saved_cntkctl);
729 	return NOTIFY_OK;
730 }
731 
732 static struct notifier_block arch_timer_cpu_pm_notifier = {
733 	.notifier_call = arch_timer_cpu_pm_notify,
734 };
735 
736 static int __init arch_timer_cpu_pm_init(void)
737 {
738 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
739 }
740 
741 static void __init arch_timer_cpu_pm_deinit(void)
742 {
743 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
744 }
745 
746 #else
747 static int __init arch_timer_cpu_pm_init(void)
748 {
749 	return 0;
750 }
751 
752 static void __init arch_timer_cpu_pm_deinit(void)
753 {
754 }
755 #endif
756 
757 static int __init arch_timer_register(void)
758 {
759 	int err;
760 	int ppi;
761 
762 	arch_timer_evt = alloc_percpu(struct clock_event_device);
763 	if (!arch_timer_evt) {
764 		err = -ENOMEM;
765 		goto out;
766 	}
767 
768 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
769 	switch (arch_timer_uses_ppi) {
770 	case VIRT_PPI:
771 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
772 					 "arch_timer", arch_timer_evt);
773 		break;
774 	case PHYS_SECURE_PPI:
775 	case PHYS_NONSECURE_PPI:
776 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
777 					 "arch_timer", arch_timer_evt);
778 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
779 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
780 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
781 						 "arch_timer", arch_timer_evt);
782 			if (err)
783 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
784 						arch_timer_evt);
785 		}
786 		break;
787 	case HYP_PPI:
788 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
789 					 "arch_timer", arch_timer_evt);
790 		break;
791 	default:
792 		BUG();
793 	}
794 
795 	if (err) {
796 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
797 		       ppi, err);
798 		goto out_free;
799 	}
800 
801 	err = arch_timer_cpu_pm_init();
802 	if (err)
803 		goto out_unreg_notify;
804 
805 
806 	/* Register and immediately configure the timer on the boot CPU */
807 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
808 				"clockevents/arm/arch_timer:starting",
809 				arch_timer_starting_cpu, arch_timer_dying_cpu);
810 	if (err)
811 		goto out_unreg_cpupm;
812 	return 0;
813 
814 out_unreg_cpupm:
815 	arch_timer_cpu_pm_deinit();
816 
817 out_unreg_notify:
818 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
819 	if (arch_timer_has_nonsecure_ppi())
820 		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
821 				arch_timer_evt);
822 
823 out_free:
824 	free_percpu(arch_timer_evt);
825 out:
826 	return err;
827 }
828 
829 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
830 {
831 	int ret;
832 	irq_handler_t func;
833 	struct arch_timer *t;
834 
835 	t = kzalloc(sizeof(*t), GFP_KERNEL);
836 	if (!t)
837 		return -ENOMEM;
838 
839 	t->base = base;
840 	t->evt.irq = irq;
841 	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
842 
843 	if (arch_timer_mem_use_virtual)
844 		func = arch_timer_handler_virt_mem;
845 	else
846 		func = arch_timer_handler_phys_mem;
847 
848 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
849 	if (ret) {
850 		pr_err("arch_timer: Failed to request mem timer irq\n");
851 		kfree(t);
852 	}
853 
854 	return ret;
855 }
856 
857 static const struct of_device_id arch_timer_of_match[] __initconst = {
858 	{ .compatible   = "arm,armv7-timer",    },
859 	{ .compatible   = "arm,armv8-timer",    },
860 	{},
861 };
862 
863 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
864 	{ .compatible   = "arm,armv7-timer-mem", },
865 	{},
866 };
867 
868 static bool __init
869 arch_timer_needs_probing(int type, const struct of_device_id *matches)
870 {
871 	struct device_node *dn;
872 	bool needs_probing = false;
873 
874 	dn = of_find_matching_node(NULL, matches);
875 	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
876 		needs_probing = true;
877 	of_node_put(dn);
878 
879 	return needs_probing;
880 }
881 
882 static int __init arch_timer_common_init(void)
883 {
884 	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
885 
886 	/* Wait until both nodes are probed if we have two timers */
887 	if ((arch_timers_present & mask) != mask) {
888 		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
889 			return 0;
890 		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
891 			return 0;
892 	}
893 
894 	arch_timer_banner(arch_timers_present);
895 	arch_counter_register(arch_timers_present);
896 	return arch_timer_arch_init();
897 }
898 
899 static int __init arch_timer_init(void)
900 {
901 	int ret;
902 	/*
903 	 * If HYP mode is available, we know that the physical timer
904 	 * has been configured to be accessible from PL1. Use it, so
905 	 * that a guest can use the virtual timer instead.
906 	 *
907 	 * If no interrupt provided for virtual timer, we'll have to
908 	 * stick to the physical timer. It'd better be accessible...
909 	 *
910 	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
911 	 * accesses to CNTP_*_EL1 registers are silently redirected to
912 	 * their CNTHP_*_EL2 counterparts, and use a different PPI
913 	 * number.
914 	 */
915 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
916 		bool has_ppi;
917 
918 		if (is_kernel_in_hyp_mode()) {
919 			arch_timer_uses_ppi = HYP_PPI;
920 			has_ppi = !!arch_timer_ppi[HYP_PPI];
921 		} else {
922 			arch_timer_uses_ppi = PHYS_SECURE_PPI;
923 			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
924 				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
925 		}
926 
927 		if (!has_ppi) {
928 			pr_warn("arch_timer: No interrupt available, giving up\n");
929 			return -EINVAL;
930 		}
931 	}
932 
933 	ret = arch_timer_register();
934 	if (ret)
935 		return ret;
936 
937 	ret = arch_timer_common_init();
938 	if (ret)
939 		return ret;
940 
941 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
942 
943 	return 0;
944 }
945 
946 static int __init arch_timer_of_init(struct device_node *np)
947 {
948 	int i;
949 
950 	if (arch_timers_present & ARCH_CP15_TIMER) {
951 		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
952 		return 0;
953 	}
954 
955 	arch_timers_present |= ARCH_CP15_TIMER;
956 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
957 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
958 
959 	arch_timer_detect_rate(NULL, np);
960 
961 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
962 
963 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
964 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
965 		if (of_property_read_bool(np, ool_workarounds[i].id)) {
966 			timer_unstable_counter_workaround = &ool_workarounds[i];
967 			static_branch_enable(&arch_timer_read_ool_enabled);
968 			pr_info("arch_timer: Enabling workaround for %s\n",
969 				timer_unstable_counter_workaround->id);
970 			break;
971 		}
972 	}
973 #endif
974 
975 	/*
976 	 * If we cannot rely on firmware initializing the timer registers then
977 	 * we should use the physical timers instead.
978 	 */
979 	if (IS_ENABLED(CONFIG_ARM) &&
980 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
981 		arch_timer_uses_ppi = PHYS_SECURE_PPI;
982 
983 	/* On some systems, the counter stops ticking when in suspend. */
984 	arch_counter_suspend_stop = of_property_read_bool(np,
985 							 "arm,no-tick-in-suspend");
986 
987 	return arch_timer_init();
988 }
989 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
990 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
991 
992 static int __init arch_timer_mem_init(struct device_node *np)
993 {
994 	struct device_node *frame, *best_frame = NULL;
995 	void __iomem *cntctlbase, *base;
996 	unsigned int irq, ret = -EINVAL;
997 	u32 cnttidr;
998 
999 	arch_timers_present |= ARCH_MEM_TIMER;
1000 	cntctlbase = of_iomap(np, 0);
1001 	if (!cntctlbase) {
1002 		pr_err("arch_timer: Can't find CNTCTLBase\n");
1003 		return -ENXIO;
1004 	}
1005 
1006 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1007 
1008 	/*
1009 	 * Try to find a virtual capable frame. Otherwise fall back to a
1010 	 * physical capable frame.
1011 	 */
1012 	for_each_available_child_of_node(np, frame) {
1013 		int n;
1014 		u32 cntacr;
1015 
1016 		if (of_property_read_u32(frame, "frame-number", &n)) {
1017 			pr_err("arch_timer: Missing frame-number\n");
1018 			of_node_put(frame);
1019 			goto out;
1020 		}
1021 
1022 		/* Try enabling everything, and see what sticks */
1023 		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1024 			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1025 		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
1026 		cntacr = readl_relaxed(cntctlbase + CNTACR(n));
1027 
1028 		if ((cnttidr & CNTTIDR_VIRT(n)) &&
1029 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1030 			of_node_put(best_frame);
1031 			best_frame = frame;
1032 			arch_timer_mem_use_virtual = true;
1033 			break;
1034 		}
1035 
1036 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1037 			continue;
1038 
1039 		of_node_put(best_frame);
1040 		best_frame = of_node_get(frame);
1041 	}
1042 
1043 	ret= -ENXIO;
1044 	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
1045 							 "arch_mem_timer");
1046 	if (IS_ERR(base)) {
1047 		pr_err("arch_timer: Can't map frame's registers\n");
1048 		goto out;
1049 	}
1050 
1051 	if (arch_timer_mem_use_virtual)
1052 		irq = irq_of_parse_and_map(best_frame, 1);
1053 	else
1054 		irq = irq_of_parse_and_map(best_frame, 0);
1055 
1056 	ret = -EINVAL;
1057 	if (!irq) {
1058 		pr_err("arch_timer: Frame missing %s irq",
1059 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1060 		goto out;
1061 	}
1062 
1063 	arch_timer_detect_rate(base, np);
1064 	ret = arch_timer_mem_register(base, irq);
1065 	if (ret)
1066 		goto out;
1067 
1068 	return arch_timer_common_init();
1069 out:
1070 	iounmap(cntctlbase);
1071 	of_node_put(best_frame);
1072 	return ret;
1073 }
1074 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1075 		       arch_timer_mem_init);
1076 
1077 #ifdef CONFIG_ACPI
1078 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1079 {
1080 	int trigger, polarity;
1081 
1082 	if (!interrupt)
1083 		return 0;
1084 
1085 	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1086 			: ACPI_LEVEL_SENSITIVE;
1087 
1088 	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1089 			: ACPI_ACTIVE_HIGH;
1090 
1091 	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1092 }
1093 
1094 /* Initialize per-processor generic timer */
1095 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1096 {
1097 	struct acpi_table_gtdt *gtdt;
1098 
1099 	if (arch_timers_present & ARCH_CP15_TIMER) {
1100 		pr_warn("arch_timer: already initialized, skipping\n");
1101 		return -EINVAL;
1102 	}
1103 
1104 	gtdt = container_of(table, struct acpi_table_gtdt, header);
1105 
1106 	arch_timers_present |= ARCH_CP15_TIMER;
1107 
1108 	arch_timer_ppi[PHYS_SECURE_PPI] =
1109 		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1110 		gtdt->secure_el1_flags);
1111 
1112 	arch_timer_ppi[PHYS_NONSECURE_PPI] =
1113 		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1114 		gtdt->non_secure_el1_flags);
1115 
1116 	arch_timer_ppi[VIRT_PPI] =
1117 		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1118 		gtdt->virtual_timer_flags);
1119 
1120 	arch_timer_ppi[HYP_PPI] =
1121 		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1122 		gtdt->non_secure_el2_flags);
1123 
1124 	/* Get the frequency from CNTFRQ */
1125 	arch_timer_detect_rate(NULL, NULL);
1126 
1127 	/* Always-on capability */
1128 	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1129 
1130 	arch_timer_init();
1131 	return 0;
1132 }
1133 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1134 #endif
1135