1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/clocksource_ids.h> 20 #include <linux/interrupt.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/sched/clock.h> 26 #include <linux/sched_clock.h> 27 #include <linux/acpi.h> 28 #include <linux/arm-smccc.h> 29 #include <linux/ptp_kvm.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #define CNTTIDR 0x08 37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 38 39 #define CNTACR(n) (0x40 + ((n) * 4)) 40 #define CNTACR_RPCT BIT(0) 41 #define CNTACR_RVCT BIT(1) 42 #define CNTACR_RFRQ BIT(2) 43 #define CNTACR_RVOFF BIT(3) 44 #define CNTACR_RWVT BIT(4) 45 #define CNTACR_RWPT BIT(5) 46 47 #define CNTPCT_LO 0x00 48 #define CNTVCT_LO 0x08 49 #define CNTFRQ 0x10 50 #define CNTP_CVAL_LO 0x20 51 #define CNTP_CTL 0x2c 52 #define CNTV_CVAL_LO 0x30 53 #define CNTV_CTL 0x3c 54 55 /* 56 * The minimum amount of time a generic counter is guaranteed to not roll over 57 * (40 years) 58 */ 59 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600) 60 61 static unsigned arch_timers_present __initdata; 62 63 struct arch_timer { 64 void __iomem *base; 65 struct clock_event_device evt; 66 }; 67 68 static struct arch_timer *arch_timer_mem __ro_after_init; 69 70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 71 72 static u32 arch_timer_rate __ro_after_init; 73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; 74 75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { 76 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", 77 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", 78 [ARCH_TIMER_VIRT_PPI] = "virt", 79 [ARCH_TIMER_HYP_PPI] = "hyp-phys", 80 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", 81 }; 82 83 static struct clock_event_device __percpu *arch_timer_evt; 84 85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; 86 static bool arch_timer_c3stop __ro_after_init; 87 static bool arch_timer_mem_use_virtual __ro_after_init; 88 static bool arch_counter_suspend_stop __ro_after_init; 89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 91 #else 92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 94 95 static cpumask_t evtstrm_available = CPU_MASK_NONE; 96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 97 98 static int __init early_evtstrm_cfg(char *buf) 99 { 100 return strtobool(buf, &evtstrm_enable); 101 } 102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 103 104 /* 105 * Makes an educated guess at a valid counter width based on the Generic Timer 106 * specification. Of note: 107 * 1) the system counter is at least 56 bits wide 108 * 2) a roll-over time of not less than 40 years 109 * 110 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details. 111 */ 112 static int arch_counter_get_width(void) 113 { 114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate; 115 116 /* guarantee the returned width is within the valid range */ 117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64); 118 } 119 120 /* 121 * Architected system timer support. 122 */ 123 124 static __always_inline 125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val, 126 struct clock_event_device *clk) 127 { 128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 129 struct arch_timer *timer = to_arch_timer(clk); 130 switch (reg) { 131 case ARCH_TIMER_REG_CTRL: 132 writel_relaxed((u32)val, timer->base + CNTP_CTL); 133 break; 134 case ARCH_TIMER_REG_CVAL: 135 /* 136 * Not guaranteed to be atomic, so the timer 137 * must be disabled at this point. 138 */ 139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO); 140 break; 141 default: 142 BUILD_BUG(); 143 } 144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 145 struct arch_timer *timer = to_arch_timer(clk); 146 switch (reg) { 147 case ARCH_TIMER_REG_CTRL: 148 writel_relaxed((u32)val, timer->base + CNTV_CTL); 149 break; 150 case ARCH_TIMER_REG_CVAL: 151 /* Same restriction as above */ 152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO); 153 break; 154 default: 155 BUILD_BUG(); 156 } 157 } else { 158 arch_timer_reg_write_cp15(access, reg, val); 159 } 160 } 161 162 static __always_inline 163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 164 struct clock_event_device *clk) 165 { 166 u32 val; 167 168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 169 struct arch_timer *timer = to_arch_timer(clk); 170 switch (reg) { 171 case ARCH_TIMER_REG_CTRL: 172 val = readl_relaxed(timer->base + CNTP_CTL); 173 break; 174 default: 175 BUILD_BUG(); 176 } 177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 178 struct arch_timer *timer = to_arch_timer(clk); 179 switch (reg) { 180 case ARCH_TIMER_REG_CTRL: 181 val = readl_relaxed(timer->base + CNTV_CTL); 182 break; 183 default: 184 BUILD_BUG(); 185 } 186 } else { 187 val = arch_timer_reg_read_cp15(access, reg); 188 } 189 190 return val; 191 } 192 193 static notrace u64 arch_counter_get_cntpct_stable(void) 194 { 195 return __arch_counter_get_cntpct_stable(); 196 } 197 198 static notrace u64 arch_counter_get_cntpct(void) 199 { 200 return __arch_counter_get_cntpct(); 201 } 202 203 static notrace u64 arch_counter_get_cntvct_stable(void) 204 { 205 return __arch_counter_get_cntvct_stable(); 206 } 207 208 static notrace u64 arch_counter_get_cntvct(void) 209 { 210 return __arch_counter_get_cntvct(); 211 } 212 213 /* 214 * Default to cp15 based access because arm64 uses this function for 215 * sched_clock() before DT is probed and the cp15 method is guaranteed 216 * to exist on arm64. arm doesn't use this before DT is probed so even 217 * if we don't have the cp15 accessors we won't have a problem. 218 */ 219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; 220 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 221 222 static u64 arch_counter_read(struct clocksource *cs) 223 { 224 return arch_timer_read_counter(); 225 } 226 227 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 228 { 229 return arch_timer_read_counter(); 230 } 231 232 static struct clocksource clocksource_counter = { 233 .name = "arch_sys_counter", 234 .id = CSID_ARM_ARCH_COUNTER, 235 .rating = 400, 236 .read = arch_counter_read, 237 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 238 }; 239 240 static struct cyclecounter cyclecounter __ro_after_init = { 241 .read = arch_counter_read_cc, 242 }; 243 244 struct ate_acpi_oem_info { 245 char oem_id[ACPI_OEM_ID_SIZE + 1]; 246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 247 u32 oem_revision; 248 }; 249 250 #ifdef CONFIG_FSL_ERRATUM_A008585 251 /* 252 * The number of retries is an arbitrary value well beyond the highest number 253 * of iterations the loop has been observed to take. 254 */ 255 #define __fsl_a008585_read_reg(reg) ({ \ 256 u64 _old, _new; \ 257 int _retries = 200; \ 258 \ 259 do { \ 260 _old = read_sysreg(reg); \ 261 _new = read_sysreg(reg); \ 262 _retries--; \ 263 } while (unlikely(_old != _new) && _retries); \ 264 \ 265 WARN_ON_ONCE(!_retries); \ 266 _new; \ 267 }) 268 269 static u64 notrace fsl_a008585_read_cntpct_el0(void) 270 { 271 return __fsl_a008585_read_reg(cntpct_el0); 272 } 273 274 static u64 notrace fsl_a008585_read_cntvct_el0(void) 275 { 276 return __fsl_a008585_read_reg(cntvct_el0); 277 } 278 #endif 279 280 #ifdef CONFIG_HISILICON_ERRATUM_161010101 281 /* 282 * Verify whether the value of the second read is larger than the first by 283 * less than 32 is the only way to confirm the value is correct, so clear the 284 * lower 5 bits to check whether the difference is greater than 32 or not. 285 * Theoretically the erratum should not occur more than twice in succession 286 * when reading the system counter, but it is possible that some interrupts 287 * may lead to more than twice read errors, triggering the warning, so setting 288 * the number of retries far beyond the number of iterations the loop has been 289 * observed to take. 290 */ 291 #define __hisi_161010101_read_reg(reg) ({ \ 292 u64 _old, _new; \ 293 int _retries = 50; \ 294 \ 295 do { \ 296 _old = read_sysreg(reg); \ 297 _new = read_sysreg(reg); \ 298 _retries--; \ 299 } while (unlikely((_new - _old) >> 5) && _retries); \ 300 \ 301 WARN_ON_ONCE(!_retries); \ 302 _new; \ 303 }) 304 305 static u64 notrace hisi_161010101_read_cntpct_el0(void) 306 { 307 return __hisi_161010101_read_reg(cntpct_el0); 308 } 309 310 static u64 notrace hisi_161010101_read_cntvct_el0(void) 311 { 312 return __hisi_161010101_read_reg(cntvct_el0); 313 } 314 315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 316 /* 317 * Note that trailing spaces are required to properly match 318 * the OEM table information. 319 */ 320 { 321 .oem_id = "HISI ", 322 .oem_table_id = "HIP05 ", 323 .oem_revision = 0, 324 }, 325 { 326 .oem_id = "HISI ", 327 .oem_table_id = "HIP06 ", 328 .oem_revision = 0, 329 }, 330 { 331 .oem_id = "HISI ", 332 .oem_table_id = "HIP07 ", 333 .oem_revision = 0, 334 }, 335 { /* Sentinel indicating the end of the OEM array */ }, 336 }; 337 #endif 338 339 #ifdef CONFIG_ARM64_ERRATUM_858921 340 static u64 notrace arm64_858921_read_cntpct_el0(void) 341 { 342 u64 old, new; 343 344 old = read_sysreg(cntpct_el0); 345 new = read_sysreg(cntpct_el0); 346 return (((old ^ new) >> 32) & 1) ? old : new; 347 } 348 349 static u64 notrace arm64_858921_read_cntvct_el0(void) 350 { 351 u64 old, new; 352 353 old = read_sysreg(cntvct_el0); 354 new = read_sysreg(cntvct_el0); 355 return (((old ^ new) >> 32) & 1) ? old : new; 356 } 357 #endif 358 359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 360 /* 361 * The low bits of the counter registers are indeterminate while bit 10 or 362 * greater is rolling over. Since the counter value can jump both backward 363 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 364 * with all ones or all zeros in the low bits. Bound the loop by the maximum 365 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 366 */ 367 #define __sun50i_a64_read_reg(reg) ({ \ 368 u64 _val; \ 369 int _retries = 150; \ 370 \ 371 do { \ 372 _val = read_sysreg(reg); \ 373 _retries--; \ 374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \ 375 \ 376 WARN_ON_ONCE(!_retries); \ 377 _val; \ 378 }) 379 380 static u64 notrace sun50i_a64_read_cntpct_el0(void) 381 { 382 return __sun50i_a64_read_reg(cntpct_el0); 383 } 384 385 static u64 notrace sun50i_a64_read_cntvct_el0(void) 386 { 387 return __sun50i_a64_read_reg(cntvct_el0); 388 } 389 #endif 390 391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 394 395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 396 397 /* 398 * Force the inlining of this function so that the register accesses 399 * can be themselves correctly inlined. 400 */ 401 static __always_inline 402 void erratum_set_next_event_generic(const int access, unsigned long evt, 403 struct clock_event_device *clk) 404 { 405 unsigned long ctrl; 406 u64 cval; 407 408 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 409 ctrl |= ARCH_TIMER_CTRL_ENABLE; 410 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 411 412 if (access == ARCH_TIMER_PHYS_ACCESS) { 413 cval = evt + arch_counter_get_cntpct_stable(); 414 write_sysreg(cval, cntp_cval_el0); 415 } else { 416 cval = evt + arch_counter_get_cntvct_stable(); 417 write_sysreg(cval, cntv_cval_el0); 418 } 419 420 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 421 } 422 423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt, 424 struct clock_event_device *clk) 425 { 426 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 427 return 0; 428 } 429 430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt, 431 struct clock_event_device *clk) 432 { 433 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 434 return 0; 435 } 436 437 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 438 #ifdef CONFIG_FSL_ERRATUM_A008585 439 { 440 .match_type = ate_match_dt, 441 .id = "fsl,erratum-a008585", 442 .desc = "Freescale erratum a005858", 443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 445 .set_next_event_phys = erratum_set_next_event_phys, 446 .set_next_event_virt = erratum_set_next_event_virt, 447 }, 448 #endif 449 #ifdef CONFIG_HISILICON_ERRATUM_161010101 450 { 451 .match_type = ate_match_dt, 452 .id = "hisilicon,erratum-161010101", 453 .desc = "HiSilicon erratum 161010101", 454 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 455 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 456 .set_next_event_phys = erratum_set_next_event_phys, 457 .set_next_event_virt = erratum_set_next_event_virt, 458 }, 459 { 460 .match_type = ate_match_acpi_oem_info, 461 .id = hisi_161010101_oem_info, 462 .desc = "HiSilicon erratum 161010101", 463 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 464 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 465 .set_next_event_phys = erratum_set_next_event_phys, 466 .set_next_event_virt = erratum_set_next_event_virt, 467 }, 468 #endif 469 #ifdef CONFIG_ARM64_ERRATUM_858921 470 { 471 .match_type = ate_match_local_cap_id, 472 .id = (void *)ARM64_WORKAROUND_858921, 473 .desc = "ARM erratum 858921", 474 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 475 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 476 .set_next_event_phys = erratum_set_next_event_phys, 477 .set_next_event_virt = erratum_set_next_event_virt, 478 }, 479 #endif 480 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 481 { 482 .match_type = ate_match_dt, 483 .id = "allwinner,erratum-unknown1", 484 .desc = "Allwinner erratum UNKNOWN1", 485 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 486 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 487 .set_next_event_phys = erratum_set_next_event_phys, 488 .set_next_event_virt = erratum_set_next_event_virt, 489 }, 490 #endif 491 #ifdef CONFIG_ARM64_ERRATUM_1418040 492 { 493 .match_type = ate_match_local_cap_id, 494 .id = (void *)ARM64_WORKAROUND_1418040, 495 .desc = "ARM erratum 1418040", 496 .disable_compat_vdso = true, 497 }, 498 #endif 499 }; 500 501 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 502 const void *); 503 504 static 505 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 506 const void *arg) 507 { 508 const struct device_node *np = arg; 509 510 return of_property_read_bool(np, wa->id); 511 } 512 513 static 514 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 515 const void *arg) 516 { 517 return this_cpu_has_cap((uintptr_t)wa->id); 518 } 519 520 521 static 522 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 523 const void *arg) 524 { 525 static const struct ate_acpi_oem_info empty_oem_info = {}; 526 const struct ate_acpi_oem_info *info = wa->id; 527 const struct acpi_table_header *table = arg; 528 529 /* Iterate over the ACPI OEM info array, looking for a match */ 530 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 531 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 532 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 533 info->oem_revision == table->oem_revision) 534 return true; 535 536 info++; 537 } 538 539 return false; 540 } 541 542 static const struct arch_timer_erratum_workaround * 543 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 544 ate_match_fn_t match_fn, 545 void *arg) 546 { 547 int i; 548 549 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 550 if (ool_workarounds[i].match_type != type) 551 continue; 552 553 if (match_fn(&ool_workarounds[i], arg)) 554 return &ool_workarounds[i]; 555 } 556 557 return NULL; 558 } 559 560 static 561 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 562 bool local) 563 { 564 int i; 565 566 if (local) { 567 __this_cpu_write(timer_unstable_counter_workaround, wa); 568 } else { 569 for_each_possible_cpu(i) 570 per_cpu(timer_unstable_counter_workaround, i) = wa; 571 } 572 573 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 574 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 575 576 /* 577 * Don't use the vdso fastpath if errata require using the 578 * out-of-line counter accessor. We may change our mind pretty 579 * late in the game (with a per-CPU erratum, for example), so 580 * change both the default value and the vdso itself. 581 */ 582 if (wa->read_cntvct_el0) { 583 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 584 vdso_default = VDSO_CLOCKMODE_NONE; 585 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { 586 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; 587 clocksource_counter.vdso_clock_mode = vdso_default; 588 } 589 } 590 591 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 592 void *arg) 593 { 594 const struct arch_timer_erratum_workaround *wa, *__wa; 595 ate_match_fn_t match_fn = NULL; 596 bool local = false; 597 598 switch (type) { 599 case ate_match_dt: 600 match_fn = arch_timer_check_dt_erratum; 601 break; 602 case ate_match_local_cap_id: 603 match_fn = arch_timer_check_local_cap_erratum; 604 local = true; 605 break; 606 case ate_match_acpi_oem_info: 607 match_fn = arch_timer_check_acpi_oem_erratum; 608 break; 609 default: 610 WARN_ON(1); 611 return; 612 } 613 614 wa = arch_timer_iterate_errata(type, match_fn, arg); 615 if (!wa) 616 return; 617 618 __wa = __this_cpu_read(timer_unstable_counter_workaround); 619 if (__wa && wa != __wa) 620 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 621 wa->desc, __wa->desc); 622 623 if (__wa) 624 return; 625 626 arch_timer_enable_workaround(wa, local); 627 pr_info("Enabling %s workaround for %s\n", 628 local ? "local" : "global", wa->desc); 629 } 630 631 static bool arch_timer_this_cpu_has_cntvct_wa(void) 632 { 633 return has_erratum_handler(read_cntvct_el0); 634 } 635 636 static bool arch_timer_counter_has_wa(void) 637 { 638 return atomic_read(&timer_unstable_counter_workaround_in_use); 639 } 640 #else 641 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 642 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 643 #define arch_timer_counter_has_wa() ({false;}) 644 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 645 646 static __always_inline irqreturn_t timer_handler(const int access, 647 struct clock_event_device *evt) 648 { 649 unsigned long ctrl; 650 651 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 652 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 653 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 654 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 655 evt->event_handler(evt); 656 return IRQ_HANDLED; 657 } 658 659 return IRQ_NONE; 660 } 661 662 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 663 { 664 struct clock_event_device *evt = dev_id; 665 666 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 667 } 668 669 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 670 { 671 struct clock_event_device *evt = dev_id; 672 673 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 674 } 675 676 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 677 { 678 struct clock_event_device *evt = dev_id; 679 680 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 681 } 682 683 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 684 { 685 struct clock_event_device *evt = dev_id; 686 687 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 688 } 689 690 static __always_inline int timer_shutdown(const int access, 691 struct clock_event_device *clk) 692 { 693 unsigned long ctrl; 694 695 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 696 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 697 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 698 699 return 0; 700 } 701 702 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 703 { 704 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 705 } 706 707 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 708 { 709 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 710 } 711 712 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 713 { 714 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 715 } 716 717 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 718 { 719 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 720 } 721 722 static __always_inline void set_next_event(const int access, unsigned long evt, 723 struct clock_event_device *clk) 724 { 725 unsigned long ctrl; 726 u64 cnt; 727 728 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 729 ctrl |= ARCH_TIMER_CTRL_ENABLE; 730 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 731 732 if (access == ARCH_TIMER_PHYS_ACCESS) 733 cnt = __arch_counter_get_cntpct(); 734 else 735 cnt = __arch_counter_get_cntvct(); 736 737 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 738 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 739 } 740 741 static int arch_timer_set_next_event_virt(unsigned long evt, 742 struct clock_event_device *clk) 743 { 744 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 745 return 0; 746 } 747 748 static int arch_timer_set_next_event_phys(unsigned long evt, 749 struct clock_event_device *clk) 750 { 751 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 752 return 0; 753 } 754 755 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo) 756 { 757 u32 cnt_lo, cnt_hi, tmp_hi; 758 759 do { 760 cnt_hi = readl_relaxed(t->base + offset_lo + 4); 761 cnt_lo = readl_relaxed(t->base + offset_lo); 762 tmp_hi = readl_relaxed(t->base + offset_lo + 4); 763 } while (cnt_hi != tmp_hi); 764 765 return ((u64) cnt_hi << 32) | cnt_lo; 766 } 767 768 static __always_inline void set_next_event_mem(const int access, unsigned long evt, 769 struct clock_event_device *clk) 770 { 771 struct arch_timer *timer = to_arch_timer(clk); 772 unsigned long ctrl; 773 u64 cnt; 774 775 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 776 ctrl |= ARCH_TIMER_CTRL_ENABLE; 777 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 778 779 if (access == ARCH_TIMER_MEM_VIRT_ACCESS) 780 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO); 781 else 782 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO); 783 784 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 785 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 786 } 787 788 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 789 struct clock_event_device *clk) 790 { 791 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 792 return 0; 793 } 794 795 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 796 struct clock_event_device *clk) 797 { 798 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 799 return 0; 800 } 801 802 static u64 __arch_timer_check_delta(void) 803 { 804 #ifdef CONFIG_ARM64 805 const struct midr_range broken_cval_midrs[] = { 806 /* 807 * XGene-1 implements CVAL in terms of TVAL, meaning 808 * that the maximum timer range is 32bit. Shame on them. 809 * 810 * Note that TVAL is signed, thus has only 31 of its 811 * 32 bits to express magnitude. 812 */ 813 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM, 814 APM_CPU_PART_POTENZA)), 815 {}, 816 }; 817 818 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) { 819 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n"); 820 return CLOCKSOURCE_MASK(31); 821 } 822 #endif 823 return CLOCKSOURCE_MASK(arch_counter_get_width()); 824 } 825 826 static void __arch_timer_setup(unsigned type, 827 struct clock_event_device *clk) 828 { 829 u64 max_delta; 830 831 clk->features = CLOCK_EVT_FEAT_ONESHOT; 832 833 if (type == ARCH_TIMER_TYPE_CP15) { 834 typeof(clk->set_next_event) sne; 835 836 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 837 838 if (arch_timer_c3stop) 839 clk->features |= CLOCK_EVT_FEAT_C3STOP; 840 clk->name = "arch_sys_timer"; 841 clk->rating = 450; 842 clk->cpumask = cpumask_of(smp_processor_id()); 843 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 844 switch (arch_timer_uses_ppi) { 845 case ARCH_TIMER_VIRT_PPI: 846 clk->set_state_shutdown = arch_timer_shutdown_virt; 847 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 848 sne = erratum_handler(set_next_event_virt); 849 break; 850 case ARCH_TIMER_PHYS_SECURE_PPI: 851 case ARCH_TIMER_PHYS_NONSECURE_PPI: 852 case ARCH_TIMER_HYP_PPI: 853 clk->set_state_shutdown = arch_timer_shutdown_phys; 854 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 855 sne = erratum_handler(set_next_event_phys); 856 break; 857 default: 858 BUG(); 859 } 860 861 clk->set_next_event = sne; 862 max_delta = __arch_timer_check_delta(); 863 } else { 864 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 865 clk->name = "arch_mem_timer"; 866 clk->rating = 400; 867 clk->cpumask = cpu_possible_mask; 868 if (arch_timer_mem_use_virtual) { 869 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 870 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 871 clk->set_next_event = 872 arch_timer_set_next_event_virt_mem; 873 } else { 874 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 875 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 876 clk->set_next_event = 877 arch_timer_set_next_event_phys_mem; 878 } 879 880 max_delta = CLOCKSOURCE_MASK(56); 881 } 882 883 clk->set_state_shutdown(clk); 884 885 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta); 886 } 887 888 static void arch_timer_evtstrm_enable(unsigned int divider) 889 { 890 u32 cntkctl = arch_timer_get_cntkctl(); 891 892 #ifdef CONFIG_ARM64 893 /* ECV is likely to require a large divider. Use the EVNTIS flag. */ 894 if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) { 895 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE; 896 divider -= 8; 897 } 898 #endif 899 900 divider = min(divider, 15U); 901 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 902 /* Set the divider and enable virtual event stream */ 903 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 904 | ARCH_TIMER_VIRT_EVT_EN; 905 arch_timer_set_cntkctl(cntkctl); 906 arch_timer_set_evtstrm_feature(); 907 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 908 } 909 910 static void arch_timer_configure_evtstream(void) 911 { 912 int evt_stream_div, lsb; 913 914 /* 915 * As the event stream can at most be generated at half the frequency 916 * of the counter, use half the frequency when computing the divider. 917 */ 918 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; 919 920 /* 921 * Find the closest power of two to the divisor. If the adjacent bit 922 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). 923 */ 924 lsb = fls(evt_stream_div) - 1; 925 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) 926 lsb++; 927 928 /* enable event stream */ 929 arch_timer_evtstrm_enable(max(0, lsb)); 930 } 931 932 static void arch_counter_set_user_access(void) 933 { 934 u32 cntkctl = arch_timer_get_cntkctl(); 935 936 /* Disable user access to the timers and both counters */ 937 /* Also disable virtual event stream */ 938 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 939 | ARCH_TIMER_USR_VT_ACCESS_EN 940 | ARCH_TIMER_USR_VCT_ACCESS_EN 941 | ARCH_TIMER_VIRT_EVT_EN 942 | ARCH_TIMER_USR_PCT_ACCESS_EN); 943 944 /* 945 * Enable user access to the virtual counter if it doesn't 946 * need to be workaround. The vdso may have been already 947 * disabled though. 948 */ 949 if (arch_timer_this_cpu_has_cntvct_wa()) 950 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 951 else 952 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 953 954 arch_timer_set_cntkctl(cntkctl); 955 } 956 957 static bool arch_timer_has_nonsecure_ppi(void) 958 { 959 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 960 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 961 } 962 963 static u32 check_ppi_trigger(int irq) 964 { 965 u32 flags = irq_get_trigger_type(irq); 966 967 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 968 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 969 pr_warn("WARNING: Please fix your firmware\n"); 970 flags = IRQF_TRIGGER_LOW; 971 } 972 973 return flags; 974 } 975 976 static int arch_timer_starting_cpu(unsigned int cpu) 977 { 978 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 979 u32 flags; 980 981 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 982 983 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 984 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 985 986 if (arch_timer_has_nonsecure_ppi()) { 987 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 988 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 989 flags); 990 } 991 992 arch_counter_set_user_access(); 993 if (evtstrm_enable) 994 arch_timer_configure_evtstream(); 995 996 return 0; 997 } 998 999 static int validate_timer_rate(void) 1000 { 1001 if (!arch_timer_rate) 1002 return -EINVAL; 1003 1004 /* Arch timer frequency < 1MHz can cause trouble */ 1005 WARN_ON(arch_timer_rate < 1000000); 1006 1007 return 0; 1008 } 1009 1010 /* 1011 * For historical reasons, when probing with DT we use whichever (non-zero) 1012 * rate was probed first, and don't verify that others match. If the first node 1013 * probed has a clock-frequency property, this overrides the HW register. 1014 */ 1015 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) 1016 { 1017 /* Who has more than one independent system counter? */ 1018 if (arch_timer_rate) 1019 return; 1020 1021 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 1022 arch_timer_rate = rate; 1023 1024 /* Check the timer frequency. */ 1025 if (validate_timer_rate()) 1026 pr_warn("frequency not available\n"); 1027 } 1028 1029 static void __init arch_timer_banner(unsigned type) 1030 { 1031 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 1032 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 1033 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 1034 " and " : "", 1035 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 1036 (unsigned long)arch_timer_rate / 1000000, 1037 (unsigned long)(arch_timer_rate / 10000) % 100, 1038 type & ARCH_TIMER_TYPE_CP15 ? 1039 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 1040 "", 1041 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 1042 type & ARCH_TIMER_TYPE_MEM ? 1043 arch_timer_mem_use_virtual ? "virt" : "phys" : 1044 ""); 1045 } 1046 1047 u32 arch_timer_get_rate(void) 1048 { 1049 return arch_timer_rate; 1050 } 1051 1052 bool arch_timer_evtstrm_available(void) 1053 { 1054 /* 1055 * We might get called from a preemptible context. This is fine 1056 * because availability of the event stream should be always the same 1057 * for a preemptible context and context where we might resume a task. 1058 */ 1059 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 1060 } 1061 1062 static u64 arch_counter_get_cntvct_mem(void) 1063 { 1064 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO); 1065 } 1066 1067 static struct arch_timer_kvm_info arch_timer_kvm_info; 1068 1069 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 1070 { 1071 return &arch_timer_kvm_info; 1072 } 1073 1074 static void __init arch_counter_register(unsigned type) 1075 { 1076 u64 start_count; 1077 int width; 1078 1079 /* Register the CP15 based counter if we have one */ 1080 if (type & ARCH_TIMER_TYPE_CP15) { 1081 u64 (*rd)(void); 1082 1083 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1084 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 1085 if (arch_timer_counter_has_wa()) 1086 rd = arch_counter_get_cntvct_stable; 1087 else 1088 rd = arch_counter_get_cntvct; 1089 } else { 1090 if (arch_timer_counter_has_wa()) 1091 rd = arch_counter_get_cntpct_stable; 1092 else 1093 rd = arch_counter_get_cntpct; 1094 } 1095 1096 arch_timer_read_counter = rd; 1097 clocksource_counter.vdso_clock_mode = vdso_default; 1098 } else { 1099 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1100 } 1101 1102 width = arch_counter_get_width(); 1103 clocksource_counter.mask = CLOCKSOURCE_MASK(width); 1104 cyclecounter.mask = CLOCKSOURCE_MASK(width); 1105 1106 if (!arch_counter_suspend_stop) 1107 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1108 start_count = arch_timer_read_counter(); 1109 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1110 cyclecounter.mult = clocksource_counter.mult; 1111 cyclecounter.shift = clocksource_counter.shift; 1112 timecounter_init(&arch_timer_kvm_info.timecounter, 1113 &cyclecounter, start_count); 1114 1115 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate); 1116 } 1117 1118 static void arch_timer_stop(struct clock_event_device *clk) 1119 { 1120 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1121 1122 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1123 if (arch_timer_has_nonsecure_ppi()) 1124 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1125 1126 clk->set_state_shutdown(clk); 1127 } 1128 1129 static int arch_timer_dying_cpu(unsigned int cpu) 1130 { 1131 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1132 1133 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1134 1135 arch_timer_stop(clk); 1136 return 0; 1137 } 1138 1139 #ifdef CONFIG_CPU_PM 1140 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1141 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1142 unsigned long action, void *hcpu) 1143 { 1144 if (action == CPU_PM_ENTER) { 1145 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1146 1147 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1148 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1149 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1150 1151 if (arch_timer_have_evtstrm_feature()) 1152 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1153 } 1154 return NOTIFY_OK; 1155 } 1156 1157 static struct notifier_block arch_timer_cpu_pm_notifier = { 1158 .notifier_call = arch_timer_cpu_pm_notify, 1159 }; 1160 1161 static int __init arch_timer_cpu_pm_init(void) 1162 { 1163 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1164 } 1165 1166 static void __init arch_timer_cpu_pm_deinit(void) 1167 { 1168 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1169 } 1170 1171 #else 1172 static int __init arch_timer_cpu_pm_init(void) 1173 { 1174 return 0; 1175 } 1176 1177 static void __init arch_timer_cpu_pm_deinit(void) 1178 { 1179 } 1180 #endif 1181 1182 static int __init arch_timer_register(void) 1183 { 1184 int err; 1185 int ppi; 1186 1187 arch_timer_evt = alloc_percpu(struct clock_event_device); 1188 if (!arch_timer_evt) { 1189 err = -ENOMEM; 1190 goto out; 1191 } 1192 1193 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1194 switch (arch_timer_uses_ppi) { 1195 case ARCH_TIMER_VIRT_PPI: 1196 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1197 "arch_timer", arch_timer_evt); 1198 break; 1199 case ARCH_TIMER_PHYS_SECURE_PPI: 1200 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1201 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1202 "arch_timer", arch_timer_evt); 1203 if (!err && arch_timer_has_nonsecure_ppi()) { 1204 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1205 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1206 "arch_timer", arch_timer_evt); 1207 if (err) 1208 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1209 arch_timer_evt); 1210 } 1211 break; 1212 case ARCH_TIMER_HYP_PPI: 1213 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1214 "arch_timer", arch_timer_evt); 1215 break; 1216 default: 1217 BUG(); 1218 } 1219 1220 if (err) { 1221 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1222 goto out_free; 1223 } 1224 1225 err = arch_timer_cpu_pm_init(); 1226 if (err) 1227 goto out_unreg_notify; 1228 1229 /* Register and immediately configure the timer on the boot CPU */ 1230 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1231 "clockevents/arm/arch_timer:starting", 1232 arch_timer_starting_cpu, arch_timer_dying_cpu); 1233 if (err) 1234 goto out_unreg_cpupm; 1235 return 0; 1236 1237 out_unreg_cpupm: 1238 arch_timer_cpu_pm_deinit(); 1239 1240 out_unreg_notify: 1241 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1242 if (arch_timer_has_nonsecure_ppi()) 1243 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1244 arch_timer_evt); 1245 1246 out_free: 1247 free_percpu(arch_timer_evt); 1248 out: 1249 return err; 1250 } 1251 1252 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1253 { 1254 int ret; 1255 irq_handler_t func; 1256 1257 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL); 1258 if (!arch_timer_mem) 1259 return -ENOMEM; 1260 1261 arch_timer_mem->base = base; 1262 arch_timer_mem->evt.irq = irq; 1263 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt); 1264 1265 if (arch_timer_mem_use_virtual) 1266 func = arch_timer_handler_virt_mem; 1267 else 1268 func = arch_timer_handler_phys_mem; 1269 1270 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt); 1271 if (ret) { 1272 pr_err("Failed to request mem timer irq\n"); 1273 kfree(arch_timer_mem); 1274 arch_timer_mem = NULL; 1275 } 1276 1277 return ret; 1278 } 1279 1280 static const struct of_device_id arch_timer_of_match[] __initconst = { 1281 { .compatible = "arm,armv7-timer", }, 1282 { .compatible = "arm,armv8-timer", }, 1283 {}, 1284 }; 1285 1286 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1287 { .compatible = "arm,armv7-timer-mem", }, 1288 {}, 1289 }; 1290 1291 static bool __init arch_timer_needs_of_probing(void) 1292 { 1293 struct device_node *dn; 1294 bool needs_probing = false; 1295 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1296 1297 /* We have two timers, and both device-tree nodes are probed. */ 1298 if ((arch_timers_present & mask) == mask) 1299 return false; 1300 1301 /* 1302 * Only one type of timer is probed, 1303 * check if we have another type of timer node in device-tree. 1304 */ 1305 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1306 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1307 else 1308 dn = of_find_matching_node(NULL, arch_timer_of_match); 1309 1310 if (dn && of_device_is_available(dn)) 1311 needs_probing = true; 1312 1313 of_node_put(dn); 1314 1315 return needs_probing; 1316 } 1317 1318 static int __init arch_timer_common_init(void) 1319 { 1320 arch_timer_banner(arch_timers_present); 1321 arch_counter_register(arch_timers_present); 1322 return arch_timer_arch_init(); 1323 } 1324 1325 /** 1326 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1327 * 1328 * If HYP mode is available, we know that the physical timer 1329 * has been configured to be accessible from PL1. Use it, so 1330 * that a guest can use the virtual timer instead. 1331 * 1332 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1333 * accesses to CNTP_*_EL1 registers are silently redirected to 1334 * their CNTHP_*_EL2 counterparts, and use a different PPI 1335 * number. 1336 * 1337 * If no interrupt provided for virtual timer, we'll have to 1338 * stick to the physical timer. It'd better be accessible... 1339 * For arm64 we never use the secure interrupt. 1340 * 1341 * Return: a suitable PPI type for the current system. 1342 */ 1343 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1344 { 1345 if (is_kernel_in_hyp_mode()) 1346 return ARCH_TIMER_HYP_PPI; 1347 1348 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1349 return ARCH_TIMER_VIRT_PPI; 1350 1351 if (IS_ENABLED(CONFIG_ARM64)) 1352 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1353 1354 return ARCH_TIMER_PHYS_SECURE_PPI; 1355 } 1356 1357 static void __init arch_timer_populate_kvm_info(void) 1358 { 1359 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1360 if (is_kernel_in_hyp_mode()) 1361 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1362 } 1363 1364 static int __init arch_timer_of_init(struct device_node *np) 1365 { 1366 int i, irq, ret; 1367 u32 rate; 1368 bool has_names; 1369 1370 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1371 pr_warn("multiple nodes in dt, skipping\n"); 1372 return 0; 1373 } 1374 1375 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1376 1377 has_names = of_property_read_bool(np, "interrupt-names"); 1378 1379 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { 1380 if (has_names) 1381 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); 1382 else 1383 irq = of_irq_get(np, i); 1384 if (irq > 0) 1385 arch_timer_ppi[i] = irq; 1386 } 1387 1388 arch_timer_populate_kvm_info(); 1389 1390 rate = arch_timer_get_cntfrq(); 1391 arch_timer_of_configure_rate(rate, np); 1392 1393 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1394 1395 /* Check for globally applicable workarounds */ 1396 arch_timer_check_ool_workaround(ate_match_dt, np); 1397 1398 /* 1399 * If we cannot rely on firmware initializing the timer registers then 1400 * we should use the physical timers instead. 1401 */ 1402 if (IS_ENABLED(CONFIG_ARM) && 1403 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1404 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1405 else 1406 arch_timer_uses_ppi = arch_timer_select_ppi(); 1407 1408 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1409 pr_err("No interrupt available, giving up\n"); 1410 return -EINVAL; 1411 } 1412 1413 /* On some systems, the counter stops ticking when in suspend. */ 1414 arch_counter_suspend_stop = of_property_read_bool(np, 1415 "arm,no-tick-in-suspend"); 1416 1417 ret = arch_timer_register(); 1418 if (ret) 1419 return ret; 1420 1421 if (arch_timer_needs_of_probing()) 1422 return 0; 1423 1424 return arch_timer_common_init(); 1425 } 1426 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1427 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1428 1429 static u32 __init 1430 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1431 { 1432 void __iomem *base; 1433 u32 rate; 1434 1435 base = ioremap(frame->cntbase, frame->size); 1436 if (!base) { 1437 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1438 return 0; 1439 } 1440 1441 rate = readl_relaxed(base + CNTFRQ); 1442 1443 iounmap(base); 1444 1445 return rate; 1446 } 1447 1448 static struct arch_timer_mem_frame * __init 1449 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1450 { 1451 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1452 void __iomem *cntctlbase; 1453 u32 cnttidr; 1454 int i; 1455 1456 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1457 if (!cntctlbase) { 1458 pr_err("Can't map CNTCTLBase @ %pa\n", 1459 &timer_mem->cntctlbase); 1460 return NULL; 1461 } 1462 1463 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1464 1465 /* 1466 * Try to find a virtual capable frame. Otherwise fall back to a 1467 * physical capable frame. 1468 */ 1469 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1470 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1471 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1472 1473 frame = &timer_mem->frame[i]; 1474 if (!frame->valid) 1475 continue; 1476 1477 /* Try enabling everything, and see what sticks */ 1478 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1479 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1480 1481 if ((cnttidr & CNTTIDR_VIRT(i)) && 1482 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1483 best_frame = frame; 1484 arch_timer_mem_use_virtual = true; 1485 break; 1486 } 1487 1488 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1489 continue; 1490 1491 best_frame = frame; 1492 } 1493 1494 iounmap(cntctlbase); 1495 1496 return best_frame; 1497 } 1498 1499 static int __init 1500 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1501 { 1502 void __iomem *base; 1503 int ret, irq = 0; 1504 1505 if (arch_timer_mem_use_virtual) 1506 irq = frame->virt_irq; 1507 else 1508 irq = frame->phys_irq; 1509 1510 if (!irq) { 1511 pr_err("Frame missing %s irq.\n", 1512 arch_timer_mem_use_virtual ? "virt" : "phys"); 1513 return -EINVAL; 1514 } 1515 1516 if (!request_mem_region(frame->cntbase, frame->size, 1517 "arch_mem_timer")) 1518 return -EBUSY; 1519 1520 base = ioremap(frame->cntbase, frame->size); 1521 if (!base) { 1522 pr_err("Can't map frame's registers\n"); 1523 return -ENXIO; 1524 } 1525 1526 ret = arch_timer_mem_register(base, irq); 1527 if (ret) { 1528 iounmap(base); 1529 return ret; 1530 } 1531 1532 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1533 1534 return 0; 1535 } 1536 1537 static int __init arch_timer_mem_of_init(struct device_node *np) 1538 { 1539 struct arch_timer_mem *timer_mem; 1540 struct arch_timer_mem_frame *frame; 1541 struct device_node *frame_node; 1542 struct resource res; 1543 int ret = -EINVAL; 1544 u32 rate; 1545 1546 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1547 if (!timer_mem) 1548 return -ENOMEM; 1549 1550 if (of_address_to_resource(np, 0, &res)) 1551 goto out; 1552 timer_mem->cntctlbase = res.start; 1553 timer_mem->size = resource_size(&res); 1554 1555 for_each_available_child_of_node(np, frame_node) { 1556 u32 n; 1557 struct arch_timer_mem_frame *frame; 1558 1559 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1560 pr_err(FW_BUG "Missing frame-number.\n"); 1561 of_node_put(frame_node); 1562 goto out; 1563 } 1564 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1565 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1566 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1567 of_node_put(frame_node); 1568 goto out; 1569 } 1570 frame = &timer_mem->frame[n]; 1571 1572 if (frame->valid) { 1573 pr_err(FW_BUG "Duplicated frame-number.\n"); 1574 of_node_put(frame_node); 1575 goto out; 1576 } 1577 1578 if (of_address_to_resource(frame_node, 0, &res)) { 1579 of_node_put(frame_node); 1580 goto out; 1581 } 1582 frame->cntbase = res.start; 1583 frame->size = resource_size(&res); 1584 1585 frame->virt_irq = irq_of_parse_and_map(frame_node, 1586 ARCH_TIMER_VIRT_SPI); 1587 frame->phys_irq = irq_of_parse_and_map(frame_node, 1588 ARCH_TIMER_PHYS_SPI); 1589 1590 frame->valid = true; 1591 } 1592 1593 frame = arch_timer_mem_find_best_frame(timer_mem); 1594 if (!frame) { 1595 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1596 &timer_mem->cntctlbase); 1597 ret = -EINVAL; 1598 goto out; 1599 } 1600 1601 rate = arch_timer_mem_frame_get_cntfrq(frame); 1602 arch_timer_of_configure_rate(rate, np); 1603 1604 ret = arch_timer_mem_frame_register(frame); 1605 if (!ret && !arch_timer_needs_of_probing()) 1606 ret = arch_timer_common_init(); 1607 out: 1608 kfree(timer_mem); 1609 return ret; 1610 } 1611 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1612 arch_timer_mem_of_init); 1613 1614 #ifdef CONFIG_ACPI_GTDT 1615 static int __init 1616 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1617 { 1618 struct arch_timer_mem_frame *frame; 1619 u32 rate; 1620 int i; 1621 1622 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1623 frame = &timer_mem->frame[i]; 1624 1625 if (!frame->valid) 1626 continue; 1627 1628 rate = arch_timer_mem_frame_get_cntfrq(frame); 1629 if (rate == arch_timer_rate) 1630 continue; 1631 1632 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1633 &frame->cntbase, 1634 (unsigned long)rate, (unsigned long)arch_timer_rate); 1635 1636 return -EINVAL; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1643 { 1644 struct arch_timer_mem *timers, *timer; 1645 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1646 int timer_count, i, ret = 0; 1647 1648 timers = kcalloc(platform_timer_count, sizeof(*timers), 1649 GFP_KERNEL); 1650 if (!timers) 1651 return -ENOMEM; 1652 1653 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1654 if (ret || !timer_count) 1655 goto out; 1656 1657 /* 1658 * While unlikely, it's theoretically possible that none of the frames 1659 * in a timer expose the combination of feature we want. 1660 */ 1661 for (i = 0; i < timer_count; i++) { 1662 timer = &timers[i]; 1663 1664 frame = arch_timer_mem_find_best_frame(timer); 1665 if (!best_frame) 1666 best_frame = frame; 1667 1668 ret = arch_timer_mem_verify_cntfrq(timer); 1669 if (ret) { 1670 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1671 goto out; 1672 } 1673 1674 if (!best_frame) /* implies !frame */ 1675 /* 1676 * Only complain about missing suitable frames if we 1677 * haven't already found one in a previous iteration. 1678 */ 1679 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1680 &timer->cntctlbase); 1681 } 1682 1683 if (best_frame) 1684 ret = arch_timer_mem_frame_register(best_frame); 1685 out: 1686 kfree(timers); 1687 return ret; 1688 } 1689 1690 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1691 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1692 { 1693 int ret, platform_timer_count; 1694 1695 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1696 pr_warn("already initialized, skipping\n"); 1697 return -EINVAL; 1698 } 1699 1700 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1701 1702 ret = acpi_gtdt_init(table, &platform_timer_count); 1703 if (ret) 1704 return ret; 1705 1706 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1707 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1708 1709 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1710 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1711 1712 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1713 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1714 1715 arch_timer_populate_kvm_info(); 1716 1717 /* 1718 * When probing via ACPI, we have no mechanism to override the sysreg 1719 * CNTFRQ value. This *must* be correct. 1720 */ 1721 arch_timer_rate = arch_timer_get_cntfrq(); 1722 ret = validate_timer_rate(); 1723 if (ret) { 1724 pr_err(FW_BUG "frequency not available.\n"); 1725 return ret; 1726 } 1727 1728 arch_timer_uses_ppi = arch_timer_select_ppi(); 1729 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1730 pr_err("No interrupt available, giving up\n"); 1731 return -EINVAL; 1732 } 1733 1734 /* Always-on capability */ 1735 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1736 1737 /* Check for globally applicable workarounds */ 1738 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1739 1740 ret = arch_timer_register(); 1741 if (ret) 1742 return ret; 1743 1744 if (platform_timer_count && 1745 arch_timer_mem_acpi_init(platform_timer_count)) 1746 pr_err("Failed to initialize memory-mapped timer.\n"); 1747 1748 return arch_timer_common_init(); 1749 } 1750 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1751 #endif 1752 1753 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts, 1754 struct clocksource **cs) 1755 { 1756 struct arm_smccc_res hvc_res; 1757 u32 ptp_counter; 1758 ktime_t ktime; 1759 1760 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY)) 1761 return -EOPNOTSUPP; 1762 1763 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 1764 ptp_counter = KVM_PTP_VIRT_COUNTER; 1765 else 1766 ptp_counter = KVM_PTP_PHYS_COUNTER; 1767 1768 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, 1769 ptp_counter, &hvc_res); 1770 1771 if ((int)(hvc_res.a0) < 0) 1772 return -EOPNOTSUPP; 1773 1774 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1; 1775 *ts = ktime_to_timespec64(ktime); 1776 if (cycle) 1777 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3; 1778 if (cs) 1779 *cs = &clocksource_counter; 1780 1781 return 0; 1782 } 1783 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp); 1784