1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/clockchips.h> 17 #include <linux/interrupt.h> 18 #include <linux/of_irq.h> 19 #include <linux/io.h> 20 21 #include <asm/arch_timer.h> 22 #include <asm/virt.h> 23 24 #include <clocksource/arm_arch_timer.h> 25 26 static u32 arch_timer_rate; 27 28 enum ppi_nr { 29 PHYS_SECURE_PPI, 30 PHYS_NONSECURE_PPI, 31 VIRT_PPI, 32 HYP_PPI, 33 MAX_TIMER_PPI 34 }; 35 36 static int arch_timer_ppi[MAX_TIMER_PPI]; 37 38 static struct clock_event_device __percpu *arch_timer_evt; 39 40 static bool arch_timer_use_virtual = true; 41 42 /* 43 * Architected system timer support. 44 */ 45 46 static inline irqreturn_t timer_handler(const int access, 47 struct clock_event_device *evt) 48 { 49 unsigned long ctrl; 50 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); 51 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 52 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 53 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); 54 evt->event_handler(evt); 55 return IRQ_HANDLED; 56 } 57 58 return IRQ_NONE; 59 } 60 61 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 62 { 63 struct clock_event_device *evt = dev_id; 64 65 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 66 } 67 68 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 69 { 70 struct clock_event_device *evt = dev_id; 71 72 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 73 } 74 75 static inline void timer_set_mode(const int access, int mode) 76 { 77 unsigned long ctrl; 78 switch (mode) { 79 case CLOCK_EVT_MODE_UNUSED: 80 case CLOCK_EVT_MODE_SHUTDOWN: 81 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); 82 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 83 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); 84 break; 85 default: 86 break; 87 } 88 } 89 90 static void arch_timer_set_mode_virt(enum clock_event_mode mode, 91 struct clock_event_device *clk) 92 { 93 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode); 94 } 95 96 static void arch_timer_set_mode_phys(enum clock_event_mode mode, 97 struct clock_event_device *clk) 98 { 99 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode); 100 } 101 102 static inline void set_next_event(const int access, unsigned long evt) 103 { 104 unsigned long ctrl; 105 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); 106 ctrl |= ARCH_TIMER_CTRL_ENABLE; 107 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 108 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt); 109 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); 110 } 111 112 static int arch_timer_set_next_event_virt(unsigned long evt, 113 struct clock_event_device *unused) 114 { 115 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt); 116 return 0; 117 } 118 119 static int arch_timer_set_next_event_phys(unsigned long evt, 120 struct clock_event_device *unused) 121 { 122 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt); 123 return 0; 124 } 125 126 static int arch_timer_setup(struct clock_event_device *clk) 127 { 128 clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; 129 clk->name = "arch_sys_timer"; 130 clk->rating = 450; 131 if (arch_timer_use_virtual) { 132 clk->irq = arch_timer_ppi[VIRT_PPI]; 133 clk->set_mode = arch_timer_set_mode_virt; 134 clk->set_next_event = arch_timer_set_next_event_virt; 135 } else { 136 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; 137 clk->set_mode = arch_timer_set_mode_phys; 138 clk->set_next_event = arch_timer_set_next_event_phys; 139 } 140 141 clk->cpumask = cpumask_of(smp_processor_id()); 142 143 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL); 144 145 clockevents_config_and_register(clk, arch_timer_rate, 146 0xf, 0x7fffffff); 147 148 if (arch_timer_use_virtual) 149 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); 150 else { 151 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); 152 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 153 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); 154 } 155 156 arch_counter_set_user_access(); 157 158 return 0; 159 } 160 161 static int arch_timer_available(void) 162 { 163 u32 freq; 164 165 if (arch_timer_rate == 0) { 166 freq = arch_timer_get_cntfrq(); 167 168 /* Check the timer frequency. */ 169 if (freq == 0) { 170 pr_warn("Architected timer frequency not available\n"); 171 return -EINVAL; 172 } 173 174 arch_timer_rate = freq; 175 } 176 177 pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n", 178 (unsigned long)arch_timer_rate / 1000000, 179 (unsigned long)(arch_timer_rate / 10000) % 100, 180 arch_timer_use_virtual ? "virt" : "phys"); 181 return 0; 182 } 183 184 u32 arch_timer_get_rate(void) 185 { 186 return arch_timer_rate; 187 } 188 189 u64 arch_timer_read_counter(void) 190 { 191 return arch_counter_get_cntvct(); 192 } 193 194 static cycle_t arch_counter_read(struct clocksource *cs) 195 { 196 return arch_counter_get_cntvct(); 197 } 198 199 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) 200 { 201 return arch_counter_get_cntvct(); 202 } 203 204 static struct clocksource clocksource_counter = { 205 .name = "arch_sys_counter", 206 .rating = 400, 207 .read = arch_counter_read, 208 .mask = CLOCKSOURCE_MASK(56), 209 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 210 }; 211 212 static struct cyclecounter cyclecounter = { 213 .read = arch_counter_read_cc, 214 .mask = CLOCKSOURCE_MASK(56), 215 }; 216 217 static struct timecounter timecounter; 218 219 struct timecounter *arch_timer_get_timecounter(void) 220 { 221 return &timecounter; 222 } 223 224 static void arch_timer_stop(struct clock_event_device *clk) 225 { 226 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", 227 clk->irq, smp_processor_id()); 228 229 if (arch_timer_use_virtual) 230 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); 231 else { 232 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); 233 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 234 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); 235 } 236 237 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); 238 } 239 240 static int arch_timer_cpu_notify(struct notifier_block *self, 241 unsigned long action, void *hcpu) 242 { 243 /* 244 * Grab cpu pointer in each case to avoid spurious 245 * preemptible warnings 246 */ 247 switch (action & ~CPU_TASKS_FROZEN) { 248 case CPU_STARTING: 249 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 250 break; 251 case CPU_DYING: 252 arch_timer_stop(this_cpu_ptr(arch_timer_evt)); 253 break; 254 } 255 256 return NOTIFY_OK; 257 } 258 259 static struct notifier_block arch_timer_cpu_nb = { 260 .notifier_call = arch_timer_cpu_notify, 261 }; 262 263 static int __init arch_timer_register(void) 264 { 265 int err; 266 int ppi; 267 268 err = arch_timer_available(); 269 if (err) 270 goto out; 271 272 arch_timer_evt = alloc_percpu(struct clock_event_device); 273 if (!arch_timer_evt) { 274 err = -ENOMEM; 275 goto out; 276 } 277 278 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 279 cyclecounter.mult = clocksource_counter.mult; 280 cyclecounter.shift = clocksource_counter.shift; 281 timecounter_init(&timecounter, &cyclecounter, 282 arch_counter_get_cntvct()); 283 284 if (arch_timer_use_virtual) { 285 ppi = arch_timer_ppi[VIRT_PPI]; 286 err = request_percpu_irq(ppi, arch_timer_handler_virt, 287 "arch_timer", arch_timer_evt); 288 } else { 289 ppi = arch_timer_ppi[PHYS_SECURE_PPI]; 290 err = request_percpu_irq(ppi, arch_timer_handler_phys, 291 "arch_timer", arch_timer_evt); 292 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { 293 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; 294 err = request_percpu_irq(ppi, arch_timer_handler_phys, 295 "arch_timer", arch_timer_evt); 296 if (err) 297 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 298 arch_timer_evt); 299 } 300 } 301 302 if (err) { 303 pr_err("arch_timer: can't register interrupt %d (%d)\n", 304 ppi, err); 305 goto out_free; 306 } 307 308 err = register_cpu_notifier(&arch_timer_cpu_nb); 309 if (err) 310 goto out_free_irq; 311 312 /* Immediately configure the timer on the boot CPU */ 313 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 314 315 return 0; 316 317 out_free_irq: 318 if (arch_timer_use_virtual) 319 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); 320 else { 321 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 322 arch_timer_evt); 323 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 324 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 325 arch_timer_evt); 326 } 327 328 out_free: 329 free_percpu(arch_timer_evt); 330 out: 331 return err; 332 } 333 334 static void __init arch_timer_init(struct device_node *np) 335 { 336 u32 freq; 337 int i; 338 339 if (arch_timer_get_rate()) { 340 pr_warn("arch_timer: multiple nodes in dt, skipping\n"); 341 return; 342 } 343 344 /* Try to determine the frequency from the device tree or CNTFRQ */ 345 if (!of_property_read_u32(np, "clock-frequency", &freq)) 346 arch_timer_rate = freq; 347 348 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) 349 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 350 351 of_node_put(np); 352 353 /* 354 * If HYP mode is available, we know that the physical timer 355 * has been configured to be accessible from PL1. Use it, so 356 * that a guest can use the virtual timer instead. 357 * 358 * If no interrupt provided for virtual timer, we'll have to 359 * stick to the physical timer. It'd better be accessible... 360 */ 361 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { 362 arch_timer_use_virtual = false; 363 364 if (!arch_timer_ppi[PHYS_SECURE_PPI] || 365 !arch_timer_ppi[PHYS_NONSECURE_PPI]) { 366 pr_warn("arch_timer: No interrupt available, giving up\n"); 367 return; 368 } 369 } 370 371 arch_timer_register(); 372 arch_timer_arch_init(); 373 } 374 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init); 375 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init); 376