1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26 
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29 
30 #include <clocksource/arm_arch_timer.h>
31 
32 #define CNTTIDR		0x08
33 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
34 
35 #define CNTVCT_LO	0x08
36 #define CNTVCT_HI	0x0c
37 #define CNTFRQ		0x10
38 #define CNTP_TVAL	0x28
39 #define CNTP_CTL	0x2c
40 #define CNTV_TVAL	0x38
41 #define CNTV_CTL	0x3c
42 
43 #define ARCH_CP15_TIMER	BIT(0)
44 #define ARCH_MEM_TIMER	BIT(1)
45 static unsigned arch_timers_present __initdata;
46 
47 static void __iomem *arch_counter_base;
48 
49 struct arch_timer {
50 	void __iomem *base;
51 	struct clock_event_device evt;
52 };
53 
54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
55 
56 static u32 arch_timer_rate;
57 
58 enum ppi_nr {
59 	PHYS_SECURE_PPI,
60 	PHYS_NONSECURE_PPI,
61 	VIRT_PPI,
62 	HYP_PPI,
63 	MAX_TIMER_PPI
64 };
65 
66 static int arch_timer_ppi[MAX_TIMER_PPI];
67 
68 static struct clock_event_device __percpu *arch_timer_evt;
69 
70 static bool arch_timer_use_virtual = true;
71 static bool arch_timer_c3stop;
72 static bool arch_timer_mem_use_virtual;
73 
74 /*
75  * Architected system timer support.
76  */
77 
78 static __always_inline
79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80 			  struct clock_event_device *clk)
81 {
82 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
83 		struct arch_timer *timer = to_arch_timer(clk);
84 		switch (reg) {
85 		case ARCH_TIMER_REG_CTRL:
86 			writel_relaxed(val, timer->base + CNTP_CTL);
87 			break;
88 		case ARCH_TIMER_REG_TVAL:
89 			writel_relaxed(val, timer->base + CNTP_TVAL);
90 			break;
91 		}
92 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
93 		struct arch_timer *timer = to_arch_timer(clk);
94 		switch (reg) {
95 		case ARCH_TIMER_REG_CTRL:
96 			writel_relaxed(val, timer->base + CNTV_CTL);
97 			break;
98 		case ARCH_TIMER_REG_TVAL:
99 			writel_relaxed(val, timer->base + CNTV_TVAL);
100 			break;
101 		}
102 	} else {
103 		arch_timer_reg_write_cp15(access, reg, val);
104 	}
105 }
106 
107 static __always_inline
108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109 			struct clock_event_device *clk)
110 {
111 	u32 val;
112 
113 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
114 		struct arch_timer *timer = to_arch_timer(clk);
115 		switch (reg) {
116 		case ARCH_TIMER_REG_CTRL:
117 			val = readl_relaxed(timer->base + CNTP_CTL);
118 			break;
119 		case ARCH_TIMER_REG_TVAL:
120 			val = readl_relaxed(timer->base + CNTP_TVAL);
121 			break;
122 		}
123 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
124 		struct arch_timer *timer = to_arch_timer(clk);
125 		switch (reg) {
126 		case ARCH_TIMER_REG_CTRL:
127 			val = readl_relaxed(timer->base + CNTV_CTL);
128 			break;
129 		case ARCH_TIMER_REG_TVAL:
130 			val = readl_relaxed(timer->base + CNTV_TVAL);
131 			break;
132 		}
133 	} else {
134 		val = arch_timer_reg_read_cp15(access, reg);
135 	}
136 
137 	return val;
138 }
139 
140 static __always_inline irqreturn_t timer_handler(const int access,
141 					struct clock_event_device *evt)
142 {
143 	unsigned long ctrl;
144 
145 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
147 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149 		evt->event_handler(evt);
150 		return IRQ_HANDLED;
151 	}
152 
153 	return IRQ_NONE;
154 }
155 
156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
157 {
158 	struct clock_event_device *evt = dev_id;
159 
160 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
161 }
162 
163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
164 {
165 	struct clock_event_device *evt = dev_id;
166 
167 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
168 }
169 
170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
171 {
172 	struct clock_event_device *evt = dev_id;
173 
174 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
175 }
176 
177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
178 {
179 	struct clock_event_device *evt = dev_id;
180 
181 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
182 }
183 
184 static __always_inline void timer_set_mode(const int access, int mode,
185 				  struct clock_event_device *clk)
186 {
187 	unsigned long ctrl;
188 	switch (mode) {
189 	case CLOCK_EVT_MODE_UNUSED:
190 	case CLOCK_EVT_MODE_SHUTDOWN:
191 		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
192 		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
193 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
194 		break;
195 	default:
196 		break;
197 	}
198 }
199 
200 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
201 				     struct clock_event_device *clk)
202 {
203 	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
204 }
205 
206 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
207 				     struct clock_event_device *clk)
208 {
209 	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
210 }
211 
212 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
213 					 struct clock_event_device *clk)
214 {
215 	timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
216 }
217 
218 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
219 					 struct clock_event_device *clk)
220 {
221 	timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
222 }
223 
224 static __always_inline void set_next_event(const int access, unsigned long evt,
225 					   struct clock_event_device *clk)
226 {
227 	unsigned long ctrl;
228 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
229 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
230 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
231 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
232 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
233 }
234 
235 static int arch_timer_set_next_event_virt(unsigned long evt,
236 					  struct clock_event_device *clk)
237 {
238 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
239 	return 0;
240 }
241 
242 static int arch_timer_set_next_event_phys(unsigned long evt,
243 					  struct clock_event_device *clk)
244 {
245 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
246 	return 0;
247 }
248 
249 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
250 					      struct clock_event_device *clk)
251 {
252 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
253 	return 0;
254 }
255 
256 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
257 					      struct clock_event_device *clk)
258 {
259 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
260 	return 0;
261 }
262 
263 static void __arch_timer_setup(unsigned type,
264 			       struct clock_event_device *clk)
265 {
266 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
267 
268 	if (type == ARCH_CP15_TIMER) {
269 		if (arch_timer_c3stop)
270 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
271 		clk->name = "arch_sys_timer";
272 		clk->rating = 450;
273 		clk->cpumask = cpumask_of(smp_processor_id());
274 		if (arch_timer_use_virtual) {
275 			clk->irq = arch_timer_ppi[VIRT_PPI];
276 			clk->set_mode = arch_timer_set_mode_virt;
277 			clk->set_next_event = arch_timer_set_next_event_virt;
278 		} else {
279 			clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
280 			clk->set_mode = arch_timer_set_mode_phys;
281 			clk->set_next_event = arch_timer_set_next_event_phys;
282 		}
283 	} else {
284 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
285 		clk->name = "arch_mem_timer";
286 		clk->rating = 400;
287 		clk->cpumask = cpu_all_mask;
288 		if (arch_timer_mem_use_virtual) {
289 			clk->set_mode = arch_timer_set_mode_virt_mem;
290 			clk->set_next_event =
291 				arch_timer_set_next_event_virt_mem;
292 		} else {
293 			clk->set_mode = arch_timer_set_mode_phys_mem;
294 			clk->set_next_event =
295 				arch_timer_set_next_event_phys_mem;
296 		}
297 	}
298 
299 	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
300 
301 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
302 }
303 
304 static void arch_timer_evtstrm_enable(int divider)
305 {
306 	u32 cntkctl = arch_timer_get_cntkctl();
307 
308 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
309 	/* Set the divider and enable virtual event stream */
310 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
311 			| ARCH_TIMER_VIRT_EVT_EN;
312 	arch_timer_set_cntkctl(cntkctl);
313 	elf_hwcap |= HWCAP_EVTSTRM;
314 #ifdef CONFIG_COMPAT
315 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
316 #endif
317 }
318 
319 static void arch_timer_configure_evtstream(void)
320 {
321 	int evt_stream_div, pos;
322 
323 	/* Find the closest power of two to the divisor */
324 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
325 	pos = fls(evt_stream_div);
326 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
327 		pos--;
328 	/* enable event stream */
329 	arch_timer_evtstrm_enable(min(pos, 15));
330 }
331 
332 static void arch_counter_set_user_access(void)
333 {
334 	u32 cntkctl = arch_timer_get_cntkctl();
335 
336 	/* Disable user access to the timers and the physical counter */
337 	/* Also disable virtual event stream */
338 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
339 			| ARCH_TIMER_USR_VT_ACCESS_EN
340 			| ARCH_TIMER_VIRT_EVT_EN
341 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
342 
343 	/* Enable user access to the virtual counter */
344 	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
345 
346 	arch_timer_set_cntkctl(cntkctl);
347 }
348 
349 static int arch_timer_setup(struct clock_event_device *clk)
350 {
351 	__arch_timer_setup(ARCH_CP15_TIMER, clk);
352 
353 	if (arch_timer_use_virtual)
354 		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
355 	else {
356 		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
357 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
358 			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
359 	}
360 
361 	arch_counter_set_user_access();
362 	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
363 		arch_timer_configure_evtstream();
364 
365 	return 0;
366 }
367 
368 static void
369 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
370 {
371 	/* Who has more than one independent system counter? */
372 	if (arch_timer_rate)
373 		return;
374 
375 	/*
376 	 * Try to determine the frequency from the device tree or CNTFRQ,
377 	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
378 	 */
379 	if (!acpi_disabled ||
380 	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
381 		if (cntbase)
382 			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
383 		else
384 			arch_timer_rate = arch_timer_get_cntfrq();
385 	}
386 
387 	/* Check the timer frequency. */
388 	if (arch_timer_rate == 0)
389 		pr_warn("Architected timer frequency not available\n");
390 }
391 
392 static void arch_timer_banner(unsigned type)
393 {
394 	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
395 		     type & ARCH_CP15_TIMER ? "cp15" : "",
396 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
397 		     type & ARCH_MEM_TIMER ? "mmio" : "",
398 		     (unsigned long)arch_timer_rate / 1000000,
399 		     (unsigned long)(arch_timer_rate / 10000) % 100,
400 		     type & ARCH_CP15_TIMER ?
401 			arch_timer_use_virtual ? "virt" : "phys" :
402 			"",
403 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
404 		     type & ARCH_MEM_TIMER ?
405 			arch_timer_mem_use_virtual ? "virt" : "phys" :
406 			"");
407 }
408 
409 u32 arch_timer_get_rate(void)
410 {
411 	return arch_timer_rate;
412 }
413 
414 static u64 arch_counter_get_cntvct_mem(void)
415 {
416 	u32 vct_lo, vct_hi, tmp_hi;
417 
418 	do {
419 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
420 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
421 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
422 	} while (vct_hi != tmp_hi);
423 
424 	return ((u64) vct_hi << 32) | vct_lo;
425 }
426 
427 /*
428  * Default to cp15 based access because arm64 uses this function for
429  * sched_clock() before DT is probed and the cp15 method is guaranteed
430  * to exist on arm64. arm doesn't use this before DT is probed so even
431  * if we don't have the cp15 accessors we won't have a problem.
432  */
433 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
434 
435 static cycle_t arch_counter_read(struct clocksource *cs)
436 {
437 	return arch_timer_read_counter();
438 }
439 
440 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
441 {
442 	return arch_timer_read_counter();
443 }
444 
445 static struct clocksource clocksource_counter = {
446 	.name	= "arch_sys_counter",
447 	.rating	= 400,
448 	.read	= arch_counter_read,
449 	.mask	= CLOCKSOURCE_MASK(56),
450 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
451 };
452 
453 static struct cyclecounter cyclecounter = {
454 	.read	= arch_counter_read_cc,
455 	.mask	= CLOCKSOURCE_MASK(56),
456 };
457 
458 static struct timecounter timecounter;
459 
460 struct timecounter *arch_timer_get_timecounter(void)
461 {
462 	return &timecounter;
463 }
464 
465 static void __init arch_counter_register(unsigned type)
466 {
467 	u64 start_count;
468 
469 	/* Register the CP15 based counter if we have one */
470 	if (type & ARCH_CP15_TIMER) {
471 		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
472 			arch_timer_read_counter = arch_counter_get_cntvct;
473 		else
474 			arch_timer_read_counter = arch_counter_get_cntpct;
475 	} else {
476 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
477 
478 		/* If the clocksource name is "arch_sys_counter" the
479 		 * VDSO will attempt to read the CP15-based counter.
480 		 * Ensure this does not happen when CP15-based
481 		 * counter is not available.
482 		 */
483 		clocksource_counter.name = "arch_mem_counter";
484 	}
485 
486 	start_count = arch_timer_read_counter();
487 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
488 	cyclecounter.mult = clocksource_counter.mult;
489 	cyclecounter.shift = clocksource_counter.shift;
490 	timecounter_init(&timecounter, &cyclecounter, start_count);
491 
492 	/* 56 bits minimum, so we assume worst case rollover */
493 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
494 }
495 
496 static void arch_timer_stop(struct clock_event_device *clk)
497 {
498 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
499 		 clk->irq, smp_processor_id());
500 
501 	if (arch_timer_use_virtual)
502 		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
503 	else {
504 		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
505 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
506 			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
507 	}
508 
509 	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
510 }
511 
512 static int arch_timer_cpu_notify(struct notifier_block *self,
513 					   unsigned long action, void *hcpu)
514 {
515 	/*
516 	 * Grab cpu pointer in each case to avoid spurious
517 	 * preemptible warnings
518 	 */
519 	switch (action & ~CPU_TASKS_FROZEN) {
520 	case CPU_STARTING:
521 		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
522 		break;
523 	case CPU_DYING:
524 		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
525 		break;
526 	}
527 
528 	return NOTIFY_OK;
529 }
530 
531 static struct notifier_block arch_timer_cpu_nb = {
532 	.notifier_call = arch_timer_cpu_notify,
533 };
534 
535 #ifdef CONFIG_CPU_PM
536 static unsigned int saved_cntkctl;
537 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
538 				    unsigned long action, void *hcpu)
539 {
540 	if (action == CPU_PM_ENTER)
541 		saved_cntkctl = arch_timer_get_cntkctl();
542 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
543 		arch_timer_set_cntkctl(saved_cntkctl);
544 	return NOTIFY_OK;
545 }
546 
547 static struct notifier_block arch_timer_cpu_pm_notifier = {
548 	.notifier_call = arch_timer_cpu_pm_notify,
549 };
550 
551 static int __init arch_timer_cpu_pm_init(void)
552 {
553 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
554 }
555 #else
556 static int __init arch_timer_cpu_pm_init(void)
557 {
558 	return 0;
559 }
560 #endif
561 
562 static int __init arch_timer_register(void)
563 {
564 	int err;
565 	int ppi;
566 
567 	arch_timer_evt = alloc_percpu(struct clock_event_device);
568 	if (!arch_timer_evt) {
569 		err = -ENOMEM;
570 		goto out;
571 	}
572 
573 	if (arch_timer_use_virtual) {
574 		ppi = arch_timer_ppi[VIRT_PPI];
575 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
576 					 "arch_timer", arch_timer_evt);
577 	} else {
578 		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
579 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
580 					 "arch_timer", arch_timer_evt);
581 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
582 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
583 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
584 						 "arch_timer", arch_timer_evt);
585 			if (err)
586 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
587 						arch_timer_evt);
588 		}
589 	}
590 
591 	if (err) {
592 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
593 		       ppi, err);
594 		goto out_free;
595 	}
596 
597 	err = register_cpu_notifier(&arch_timer_cpu_nb);
598 	if (err)
599 		goto out_free_irq;
600 
601 	err = arch_timer_cpu_pm_init();
602 	if (err)
603 		goto out_unreg_notify;
604 
605 	/* Immediately configure the timer on the boot CPU */
606 	arch_timer_setup(this_cpu_ptr(arch_timer_evt));
607 
608 	return 0;
609 
610 out_unreg_notify:
611 	unregister_cpu_notifier(&arch_timer_cpu_nb);
612 out_free_irq:
613 	if (arch_timer_use_virtual)
614 		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
615 	else {
616 		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
617 				arch_timer_evt);
618 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
619 			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
620 					arch_timer_evt);
621 	}
622 
623 out_free:
624 	free_percpu(arch_timer_evt);
625 out:
626 	return err;
627 }
628 
629 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
630 {
631 	int ret;
632 	irq_handler_t func;
633 	struct arch_timer *t;
634 
635 	t = kzalloc(sizeof(*t), GFP_KERNEL);
636 	if (!t)
637 		return -ENOMEM;
638 
639 	t->base = base;
640 	t->evt.irq = irq;
641 	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
642 
643 	if (arch_timer_mem_use_virtual)
644 		func = arch_timer_handler_virt_mem;
645 	else
646 		func = arch_timer_handler_phys_mem;
647 
648 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
649 	if (ret) {
650 		pr_err("arch_timer: Failed to request mem timer irq\n");
651 		kfree(t);
652 	}
653 
654 	return ret;
655 }
656 
657 static const struct of_device_id arch_timer_of_match[] __initconst = {
658 	{ .compatible   = "arm,armv7-timer",    },
659 	{ .compatible   = "arm,armv8-timer",    },
660 	{},
661 };
662 
663 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
664 	{ .compatible   = "arm,armv7-timer-mem", },
665 	{},
666 };
667 
668 static bool __init
669 arch_timer_needs_probing(int type, const struct of_device_id *matches)
670 {
671 	struct device_node *dn;
672 	bool needs_probing = false;
673 
674 	dn = of_find_matching_node(NULL, matches);
675 	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
676 		needs_probing = true;
677 	of_node_put(dn);
678 
679 	return needs_probing;
680 }
681 
682 static void __init arch_timer_common_init(void)
683 {
684 	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
685 
686 	/* Wait until both nodes are probed if we have two timers */
687 	if ((arch_timers_present & mask) != mask) {
688 		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
689 			return;
690 		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
691 			return;
692 	}
693 
694 	arch_timer_banner(arch_timers_present);
695 	arch_counter_register(arch_timers_present);
696 	arch_timer_arch_init();
697 }
698 
699 static void __init arch_timer_init(void)
700 {
701 	/*
702 	 * If HYP mode is available, we know that the physical timer
703 	 * has been configured to be accessible from PL1. Use it, so
704 	 * that a guest can use the virtual timer instead.
705 	 *
706 	 * If no interrupt provided for virtual timer, we'll have to
707 	 * stick to the physical timer. It'd better be accessible...
708 	 */
709 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
710 		arch_timer_use_virtual = false;
711 
712 		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
713 		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
714 			pr_warn("arch_timer: No interrupt available, giving up\n");
715 			return;
716 		}
717 	}
718 
719 	arch_timer_register();
720 	arch_timer_common_init();
721 }
722 
723 static void __init arch_timer_of_init(struct device_node *np)
724 {
725 	int i;
726 
727 	if (arch_timers_present & ARCH_CP15_TIMER) {
728 		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
729 		return;
730 	}
731 
732 	arch_timers_present |= ARCH_CP15_TIMER;
733 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
734 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
735 
736 	arch_timer_detect_rate(NULL, np);
737 
738 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
739 
740 	/*
741 	 * If we cannot rely on firmware initializing the timer registers then
742 	 * we should use the physical timers instead.
743 	 */
744 	if (IS_ENABLED(CONFIG_ARM) &&
745 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
746 			arch_timer_use_virtual = false;
747 
748 	arch_timer_init();
749 }
750 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
751 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
752 
753 static void __init arch_timer_mem_init(struct device_node *np)
754 {
755 	struct device_node *frame, *best_frame = NULL;
756 	void __iomem *cntctlbase, *base;
757 	unsigned int irq;
758 	u32 cnttidr;
759 
760 	arch_timers_present |= ARCH_MEM_TIMER;
761 	cntctlbase = of_iomap(np, 0);
762 	if (!cntctlbase) {
763 		pr_err("arch_timer: Can't find CNTCTLBase\n");
764 		return;
765 	}
766 
767 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
768 	iounmap(cntctlbase);
769 
770 	/*
771 	 * Try to find a virtual capable frame. Otherwise fall back to a
772 	 * physical capable frame.
773 	 */
774 	for_each_available_child_of_node(np, frame) {
775 		int n;
776 
777 		if (of_property_read_u32(frame, "frame-number", &n)) {
778 			pr_err("arch_timer: Missing frame-number\n");
779 			of_node_put(best_frame);
780 			of_node_put(frame);
781 			return;
782 		}
783 
784 		if (cnttidr & CNTTIDR_VIRT(n)) {
785 			of_node_put(best_frame);
786 			best_frame = frame;
787 			arch_timer_mem_use_virtual = true;
788 			break;
789 		}
790 		of_node_put(best_frame);
791 		best_frame = of_node_get(frame);
792 	}
793 
794 	base = arch_counter_base = of_iomap(best_frame, 0);
795 	if (!base) {
796 		pr_err("arch_timer: Can't map frame's registers\n");
797 		of_node_put(best_frame);
798 		return;
799 	}
800 
801 	if (arch_timer_mem_use_virtual)
802 		irq = irq_of_parse_and_map(best_frame, 1);
803 	else
804 		irq = irq_of_parse_and_map(best_frame, 0);
805 	of_node_put(best_frame);
806 	if (!irq) {
807 		pr_err("arch_timer: Frame missing %s irq",
808 		       arch_timer_mem_use_virtual ? "virt" : "phys");
809 		return;
810 	}
811 
812 	arch_timer_detect_rate(base, np);
813 	arch_timer_mem_register(base, irq);
814 	arch_timer_common_init();
815 }
816 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
817 		       arch_timer_mem_init);
818 
819 #ifdef CONFIG_ACPI
820 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
821 {
822 	int trigger, polarity;
823 
824 	if (!interrupt)
825 		return 0;
826 
827 	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
828 			: ACPI_LEVEL_SENSITIVE;
829 
830 	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
831 			: ACPI_ACTIVE_HIGH;
832 
833 	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
834 }
835 
836 /* Initialize per-processor generic timer */
837 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
838 {
839 	struct acpi_table_gtdt *gtdt;
840 
841 	if (arch_timers_present & ARCH_CP15_TIMER) {
842 		pr_warn("arch_timer: already initialized, skipping\n");
843 		return -EINVAL;
844 	}
845 
846 	gtdt = container_of(table, struct acpi_table_gtdt, header);
847 
848 	arch_timers_present |= ARCH_CP15_TIMER;
849 
850 	arch_timer_ppi[PHYS_SECURE_PPI] =
851 		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
852 		gtdt->secure_el1_flags);
853 
854 	arch_timer_ppi[PHYS_NONSECURE_PPI] =
855 		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
856 		gtdt->non_secure_el1_flags);
857 
858 	arch_timer_ppi[VIRT_PPI] =
859 		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
860 		gtdt->virtual_timer_flags);
861 
862 	arch_timer_ppi[HYP_PPI] =
863 		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
864 		gtdt->non_secure_el2_flags);
865 
866 	/* Get the frequency from CNTFRQ */
867 	arch_timer_detect_rate(NULL, NULL);
868 
869 	/* Always-on capability */
870 	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
871 
872 	arch_timer_init();
873 	return 0;
874 }
875 
876 /* Initialize all the generic timers presented in GTDT */
877 void __init acpi_generic_timer_init(void)
878 {
879 	if (acpi_disabled)
880 		return;
881 
882 	acpi_table_parse(ACPI_SIG_GTDT, arch_timer_acpi_init);
883 }
884 #endif
885